

WP3.1. REVIEWTRENDSINSTEMAMAPPROACHINSTANDARDEDUCATION INEUAND ASSOCIATEDI

Due date of deliverable: 30/04/2024 Actual submission date: 30/04/2024

Table of contents

Technical References	3
Document history	3
Abstract of Deliverable	4
1 Objective of the task 3.1	5
2 Methology	6
2.1 Search and select information sources.	6
2.2 Develop a review protocol	7
2.3 Conduct search and study selection	7
2.4 Extract and synthesize data	9
3 Interpret and present results	9
3.1 Evolution of the STEM/STEAM concept in recent years	10
3.1.1 Results of the bibliometric analysis	10
3.1.2 Results of the systematic review	15
3.2 STEAM Education	17
3.2.1 Pedagogical process	17
3.2.2 Curriculum	19
3.2.3 Assessment	20
3.3 Study of inclusive aspects in relation to STEAM education	20
3.4 STEAM/STEM research methods	21
4 Conclusions	25
5 Document references additional to those used in the review	27
Annex 1. References selected in the research topic Evolution of STEAM in Education	28
Annex 2. References selected in the research topic STEAM Education	30
Annex 3. References selected in the research topic Inclusion in STEAM Education	33
Annex 5. Summary table of the articles selected for the study of the topic STEAM in Education	35
Annex 5. Summary table of the articles selected for the study of the topic STEAM in Education	55
Annex 6. Summary table of the articles selected for the STEAM and Inclusion topic study	78
Annex 7. Keyword network image of STEM/STEAM and education research	89

Technical References

Project number	101132652
Project title	STEAMBRACE - European coordination network and activities to embrace a sustainable and inclusive STEAM educational system: the blend of artistic and creative approaches in STEM education, research & innovation
Project duration	36 Months

Deliverable No.	D3.1 Description of STE(A)M trends in education systems in Europe
Dissemination level ¹	CO - Confidential
Work Package	WP3. Capacity building of the STEAM network and STEAM activities
Task	Task 3.1. Review trends in STE(A)M approach in standard education in EU
	and associated
Lead beneficiary	UPV/EHU
Contributing beneficiaries	
Due date of deliverable	30/04/2024
Actual submission date	30/04/2024

1 PU = Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

Document

history

V	Date	Modifications	Author
	30/04/2024	First version	

Abstract of Deliverable

The European Union identifies STEM education as a key pillar for competitiveness and innovation in member countries (European Commission, 2019). Thus, the promotion of STEM competence in European education systems is seen as crucial to prepare young people for the challenges of the current and future labour market. From that perspective, in recent years, the inclusion of the arts in STEM, STE(A)M, is postulated as a new approach that, in addition to preparing students for careers in scientific and technological fields, aims to enhance creativity and innovation (Smith et al., 2019).

This new approach poses challenges for interdisciplinary implementation in education, not only because of the disparate basic knowledge of each discipline, but also because they are disciplines with traditionally different pedagogical approaches to teaching. This leads us to pose some questions to investigate what the trends in STEAM education in Europe are, in partner countries, and internationally, what has proven to be effective pedagogical practice in the area, and what are the characteristics of practices that foster inclusion.

To this end, a review of the literature on four specific topics has been carried out, both at European and international level, in order to gather the maximum number of contrasted scientific contributions. The research includes the development of a review protocol and the selection of information sources to interpret and present the results, which involves a bibliometric analysis and a systematic review.

The results include:

a) Evolution of the STEAM concept. There is evidence of the consolidation of the STEAM concept at international level, with a greater inclusion of the Arts in the STEM approach and with creativity, interdisciplinarity and learning methods as emerging research topics. Although there are proposals and strategies at European level to promote STEAM education, research in this field is more predominant in the Spanish context.

b) STEAM education. Problem-based learning, with group work, interdisciplinary approach and formative assessment, are the pedagogical characteristics that receive most scientific support.

c) The inclusive perspective in STEAM studies. The results of the scientific literature on the impact of STEAM/STEM education on aspects such as the social, gender or learning gap are analysed.

d) Benefits of STEAM integration in the curriculum. The STEAM approach has the potential to make these fields more accessible, relevant and attractive, favouring inclusion. Strategies such as peer mentoring, female role models and social support exist to increase women's interest and confidence in STEAM disciplines.

e) STEAM/STEM Research Methods. Questionnaires used to assess STEAM experiences and to assess STEAM competence in learners are listed.

Therefore, the systematic review of European and international education systems and their indicators provides valuable guidance for the design, implementation and assessment of STEAM activities in the STEAMbrace project, as well as for addressing gender inclusion and gender mainstreaming.

1 Objective of the task 3.1.

The main objective of the task was to carry out a systematic review of European education systems and associated, led by EHU and supported by EDE and EFZG, to obtain the latest indicators and scales related to STE(A)M education focusing on in STE(A)M approach in standard education.

In order to define what could be the most relevant topics to be researched in response to the objective of task 3.1, several research questions were identified among the participating partners:

A. Current situation of STEAM Education in EU and associated; it would describe the analysis of the reality that should be taken into account for the design of the activities.

- a. What are the **current trends** in the implementation of the STE(A)M approach in standard education in the European Union? Presence of (A)?
- b. Which **teaching strategies and pedagogical methods** are most frequently used in STE(A)M education in EU countries?
- c. What is the **impact of integrating STE(A)M** into the standard education curriculum in the EU in terms of academic outcomes and skill development?
- d. Are there significant **differences** in the adoption and application of the STE(A)M approach among different **countries** in the European Union?
- e. How are **challenges and barriers** in the effective implementation of STE(A)M in standard education in the EU being addressed?
- f. Are there **gender disparities** in student participation, access, and achievements in STE(A)M education programs in the European Union, and how are these disparities evolving over time?
- g. What is the impact of gender gaps on student participation and achievements in STE(A)M programs in relation to the educational strategies employed in the EU?
- h. What **measures** are being taken to address gender disparities and improve equity in STE(A)M education, considering both the public and private sectors in different urban and rural contexts in the European Union?

B. Analysis of current STEAM practices, to analyse their specific approach, and to learn something/try to avoid bad approaches/ or to improve the situation.

- a. Art thinking approach in the practice/community.
- b. Where does STEAM stand in the educational system/specific school?
- c. What about in the job market and STEM fields?
- d. How balanced are the STEAM approaches in the area of research or in the practice?
- e. Gender balance and resource balance.
- f. What can this specific example teach us? Why this practice?
- g. Which **teaching strategies and pedagogical methods** are most frequently used in STE(A)M education in EU countries?
- h. How are **challenges and barriers** in the effective implementation of STE(A)M in standard education in the EU being addressed?
- i. How do **educational strategies** implemented in STE(A)M programs vary based on current legislation in EU countries?

Funded by the EU. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

5

j. Is there a **significant difference** in the quality and accessibility of STE(A)M education between public and private systems in urban and rural settings in the European Union?

It must be clarified that such a diversity of topics would have required differentiated literature analyses for each of them. From a scientific point of view, the literature review or state of the art corresponds to the detailed description of a certain topic or technology (Gómez-Luna et al., 2014). Thus, and with the intention of delimiting the systematic review, the above research questions have been generalised to **three main topics**:

- 1. Trends in the implementation of STEAM in education, where trends are understood as developments in STEM/STEAM education contexts (systematic reviews).
- 2. Characteristics of effective educational proposals (experiences), examples of experiences and pedagogical methodologies.
- 3. Benefits of integrating STEAM into the curriculum with respect to performance, gender and inclusion.

Therefore, taking into account the purpose of the project and the tasks following the literature review, a systematic review of the three topics described was considered. Thus, as a **specific objective** of the literature review it is highlighted: "to review the evolution that STEM/STEAM education has had at European level, analysing the characteristics of the educational proposals with the most scientific evidence, in order to use the benefits identified in the literature in the proposals to be designed, as well as in the methodological procedure for their implementation and assessment".

2 Methology

2.1 Search and select information sources

For the study of the first topic, it was decided to carry out a bibliometric analysis, in addition to the systematic review carried out in all the topics. This decision was based on the fact that bibliometrics as a scientific method is based on the investigation of statistically regular behaviour of the different factors related to scientific production (Moreno-Fernandez and Fuentes-Lara, 2019), making it an appropriate method when we want to assess trends. *Voswiever* software was used for data analysis.

The article selection process was conducted according to The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) (Moher et al., 2009) in its PRISMA2020 version. The PRISMA 2020 statement replaces the 2009 statement and includes a new publication submission guideline that reflects advances in methods for identifying, selecting, assessing and synthesising studies (Page et al., 2021).

A systematic search of the international literature was conducted in *Web of Science* and *Scopus* electronic databases by selecting articles published in peer-reviewed journals.

The last research was conducted on 23rd March 2024. Restrictions were made limiting the research to peer-reviewed academic journal or conference publications, in English and Spanish, in the area of social sciences or education, published from 2014 onwards. The search strategy used Boolean combinations of the following keywords:

 Web of Science, WOS: ("STEAM*" OR "STE(A)M*") AND ("education*" OR "curriculum*" OR "school*")

• Scopus: TITLE-ABS-KEY TS=("education*" OR "curriculum*" OR "school*") AND ("literature review" OR "trends" OR "meta-analysis")

2.2 Develop a review protocol

After the first filtered search, manual searches were conducted to identify target articles. Articles were selected for review based on five main inclusion criteria:

- The research work is related to the evolution of STEM/STEAM education.
- The article collects practical and empirically assessed experiences on the pedagogical implementation of STEAM/STEM in education.
- The article reflects results on the impact of STEAM/STEM education on aspects such as the social, gender and learning gaps.
- The study describes the methodology followed and the instruments/materials used.

Studies were excluded where:

- The target audience was not 'students in non-university education'.
- Country-specific systematic reviews.
- Experiences where STEAM resources or projects used were not displayed or linked.
- Experiences that were not empirically assessed.

The reference management software *Refwork* was used to group the papers and eliminate duplicates.

2.3 Conduct search and study selection

The articles selected in the 1st and 2nd screening were differentiated according to the target topic to extract the information according to whether it responded to an evolution of STEAM/STEM education, an experience, or evidence regarding the improvement of inclusion and equity.

In a first screening, the selection criteria were searched for in the title, keywords and abstract of the article. In the second screening, the full text was read.

The flow chart (Figure 1) shows the number of studies identified from databases and other sources, the number of studies screened by authors and assessed for eligibility.

Figure 1. Flow chart describing the process followed for sample selection according to PRISMA.

The literature review has been extensive in order to cover different aspects that could serve as a guide for the various actions of the project. The selected articles have been grouped according to the information they can contribute to each of the 3 topics in order to identify the current situation of STEAM education, as well as the characteristics and research methodologies that have scientific support and that we should consider in our project. Number of articles gathered in each topic:

1. Trends in the implementation of STEAM in education. 24 articles have been included in the review. Annex 1 lists the references of the articles.

- 2. Characteristics of effective educational proposals (experiences), examples of experiences and pedagogical methodologies. 35 articles have been included in the review. Annex 2 contains the references of the articles.
- 3. Benefits of integrating STEAM into the curriculum with respect to achievement, gender and inclusion. 25 articles have been included in the review. Annex 3 lists the references of the articles.

2.4 Extract and synthesize data

Once the articles to be studied had been selected, the relevant information from the selected studies was extracted and systematically organised. Summary tables were used to compare, interact and analyse the data.

In each table, the following information was collected:

- Identifying data: Authors, Title, Journal and Publish date, Country of experience/ research
- Summarized Abstract
- Methods Used
- Results
- Conclusions
- Contributions

The summary table for the topic 'Trends in STEAM implementation in education' can be found in Annex 4.

Annex 5 contains the summary table of the topic 'Characteristics of effective educational proposals (experiences), examples of experiences and pedagogical methodologies'. Finally, the summary table corresponding to the topic 'Benefits of STEAM integration in the curriculum with respect to performance, gender and inclusion' can be found in Annex 6.

3 Interpret and present results

The results were grouped into four dimensions. Three responded to the topics of interest described in the objectives section:

- A) Evolution of the STEAM concept. It explores the evolution and development of the STEAM concept, the proven contributions of its implementation, the barriers studied and the directions for the future.
- B) STEAM education. It describes the pedagogical characteristics studied in the literature whose results could be considered for the design of STEAM projects. In this section, the pedagogical process (methodologies, types of activities, strategies, technologies), curriculum and assessment are differentiated.
- C) The inclusive perspective in STEAM studies. The results of the scientific literature on the impact of STEAM/STEM education on aspects such as the social, gender and learning gaps are analysed.

However, in addition to the three topics mentioned above, when extracting and presenting the results of the publications, it was decided to add a fourth research topic:

D) STEAM/STEM Research Methods. Mainly the questionnaires used for the assessment of STEAM experiences and for the assessment of STEAM competence in students have been studied.

3.1 Evolution of the STEM/STEAM concept in recent years

As described in the methodology section, in order to study the evolution and trends of the STEAM/STEM concept in recent years, a bibliometric analysis and a systematic review of the literature has been carried out using the Web of Science (WOS from now on) and Scopus sample.

3.1.1 Results of the bibliometric analysis

The bibliometric analysis has been carried out using WOS data and the Vosviewer software.

Firstly, an attempt was made to identify the evolution of the STEAM/STEM concept over the years. The results show that the largest publication is concentrated in the last 5 years (see Figure 2), with a huge increase in the study of STEAM in education.

Figure 2. Number of articles related to STEAM/STEM studies in education on the WOS database over the last 10 years

The COVID'19 factor as a driver of this increase need to be considered, as cited in some articles. What is certain is that it was already on the rise before the pandemic, but the effects of emergency education led to measures being taken both in educational policies and in educational practices and research that have undoubtedly had an effect on all areas related to educational technology.

The countries with the highest scientific publication impact on STEAM/ STEM in education are the USA and Spain (see Figure 3), according to the WOS database (n = 659).

Note: Only 15 of the selected articles were due to being written in Spanish, so this criterion does not interfere with the results shown.

From the full WOS sample, it was decided to analyse what percentage were published in EU and associated. The analysis was conducted on 30th March 2024, so the WOS sample had slightly expanded to 692 articles at the international level. Specifically, 34% of the publication (n=234) in relation to the analysis of STEAM/ STEM in education were from EU and associated. As can be seen in the Figure, 41% of the impact publications came from Spanish contexts.

Figure 4. Number of publications by EU and associated, according to the selected WOS sample (n = 692).

During the analysis of the most studied topics in recent years, which could give us a vision of the impact of the Arts in STEM education, it was decided to use the complete sample of the WOS and Scopus databases at the international level. The reason was to broaden the search for the elements studied in the experiences and projects on STEAM/ STEM+Art, given the high presence of American and Southeast Asian studies, it was decided not to exclude these countries in case in a subsequent study there might

be educational projects or validated instruments that could serve as a guide for their subsequent adaptation to our context.

Thus, in order to illustrate research hotspots in the area of STEM/ STEAM and education, the cooccurrence of keywords was analysed with *VOSviewer* and a minimum of 10 occurrences per keyword was established. A keyword study was conducted on the full sample of publications, n = 1173. The bibliometric data from the study found 2633 keywords, of which 64 met the selected threshold.

Table 1 below lists the keywords from highest to lowest incidence and their Total link strength, i.e. the number of publications in which two keywords occur together. As can be seen, the current research hotspots (highest occurrence), in order, are mainly concentrated in the areas of *STEAM, STEM education, art education, foreign countries, creativity, interdisciplinary approach and teaching methods*.

Keyword	Occurrences	Total link 🗸 strength	
stem education	171	800	
art education	148	728	
foreign countries	79	437	
interdisciplinary approach	53	284	
steam	183	278	
teaching methods	35	207	
creativity	57	192	
active learning	21	149	
design	29	147	
student attitudes	22	129	
elementary school students	26	128	
student projects	16	124	
teacher attitudes	19	122	
engineering education	31	104	
students	34	104	
teaching	31	104	
elementary school teachers	15	103	
instructional effectiveness	16	102	
skill development	14	100	

Keyword	Occurrences	Total link 🗸
	occurrences	strength
curriculum development	16	98
stem	46	98
faculty development	15	96
steam education	98	96
elementary secondary education	18	95
educational technology	14	91
problem solving	16	85
thinking skills	14	85
cooperative learning	13	83
technology uses in education	14	80
program effectiveness	12	79
education	28	75
barriers	11	74
learning activities	13	73
science education	25	72
high school students	12	71
curriculum	23	68
middle school students	14	68
educational change	11	67
creative thinking	13	66
learning	20	65
higher education	16	63
robotics	16	63
21st century skills	11	62
inquiry	11	60
integrated curriculum	14	60
curriculum implementation	11	59
early childhood education	18	59
self efficacy	11	59
preservice teachers	10	54
student	13	54
project-based learning	14	52
covid-19	14	48
innovation	12	47
art	12	41
mathematics education	12	37
curricula	10	35
sustainability	10	33
desian thinking	10	31
computational thinking	20	30
mathematics	10	26
primary education	13	25
technology	11	24
teacher training	11	23
artificial intelligence	10	20

Table 1. Results of the co-occurrence analysis of the keywords

Figure 5 reflects the study hotspots and their relationship to other study areas.

Figure 5. Visualisation of the keyword network in STEM/STEAM and education research. Note: This figure is shown in a larger size in Annex 7.

The size of the circles represents the occurrences of the keywords. The larger a circle is, the more a keyword was co-selected in the STEM/ STEAM and education publications. The keywords "STEM education" and "STEAM" were the strongest. The distance between the two keywords shows the relative strength and thematic disparity. The circles of the same colour suggest a similar theme between these publications. In other words, the higher the node's size, the more it is studied, and the closer the concepts are to each other, the more they are studied together.

The keyword network in Figure 5 clearly illustrates four distinct clusters (see Table 2). Each represents a subfield of the field of study in STEM/STEAM in education.

The appropriate labels for the four main clusters are shown in Table 2:

Cluster 1 (27 items)	Cluster 2 (22 items)	Cluster 3 (12 items)	Cluster 4 (3 items)
art	21st century skills	active learning	creative thinking
artificial intelligence	art education	barriers	design
computational thinking	cooperative learning	curriculum developme	middle school students
creativity	covid-19	curriculum implementa	
curricula	early childhood educati	educational change	
curriculum	educational technology	high school students	
design thinking	elementary school stude	inquiry	
education	elementary school teach	integrated curriculum	
engineering education	elementary secondary e	interdisciplinary approa	
higher education	faculty development	learning activities	
innovation	foreign countries	student projects	
learning	instructional effectivene	teaching methods	
mathematics	preservice teachers		
mathematics education	problem solving		
primary education	program effectiveness		
project-based learning	self efficacy		
robotics	skill development		
science education	stem education		
steam	student attitudes		
steam education	teacher attitudes		
stem	technology uses in educ		
student	thinking skills		
students			
sustainability			
teacher training			
teaching			
technology			

Table 2. Interrelated subfields of study in STEAM/STEM in education research

3.1.2 Results of the systematic review

The systematic review of the trends and evolution of the STEAM concept in education explored the evolution and development of the STEAM concept, as well as the demonstrated contributions of its implementation, the barriers studied and the directions for the future. A total of 24 articles have been selected for review. Annex 1 contains the bibliographical citations of the articles studied, and Annex 4 the comparative table with the data extracted.

3.1.2.1 Evolution of the STEAM concept

Regarding the evolution of STEAM research in education, like the mapping done in the literature review, the study by Lan Phuong (2021) or Silva-Díaz et al. (2022) show a significant increase in research, especially in the last five years, with a growth rate of 30.47% per year. The expansion from STEM to STEAM in these years includes the arts, recognising that creativity and innovation are crucial to solve complex problems and make learning more complete and engaging.

3.1.2.2 Contributions of STEAM/STEM education

There are several contributions that receive scientific evidence on the implementation of STEAM in education. On the one hand, it is shown that STEAM education from early childhood has a positive influence on children's social and cognitive skills, Su et al. (2024).

From that point of view, studies over the last 20 years (Marin et al., 2021) conclude that - STEAM-EDU contributes to critical thinking, problem solving and gender equality.

Creativity is another contribution of STEAM that has been studied in recent years (Aguilera, 2021; Smaniego, 2024). In fact, in Aguilera's study (2021), in both the STEM and STEAM approaches, positive effects on students' creativity are observed.

In the case of educational robotics, the review of the last 15 years by González et al. (2021) points out that educational robotics improves communication, teamwork, creativity and problem-solving skills. It also benefits STEAM learning, interdisciplinary skills and critical thinking.

On the other hand, Krüger et al., 2021, in their systematic review, study the relationship between 21st century competences and STEAM learning environments. They conclude that ICT development and digital literacy are associated with the use of technology in STEAM.

From the point of view of the contribution that STEAM/ STEM education can make to boosting science careers, Caspi et al. (2023), through the development of informal STEM development programmes in primary education, showed that informal STEM programmes for primary school students increase STEM career aspirations and 1/3 of participants aspire to STEM careers, with gender variations.

3.1.2.3 Barriers

The Pearson 2021 article highlights three main barriers to the development of STEAM education:

- A) Political barriers as the main difficulty for the development of STEAM education. Schools face difficulties in implementing high-quality STEAM programmes due to lack of funding (also highlighted in the study by Carter et al., 2022) and restrictive local and state policies, which hinder the adoption of innovative, student-centred learning approaches.
- B) Curriculum and time constraints. Schools often must follow strict guidelines and tests, leaving little room for lecturers to explore STEAM education, which requires time for students to engage in creative and interdisciplinary learning.
- C) Lack of teachers' preparation in STEAM. Many lecturers are not familiar with STEAM or how to integrate it into their teaching, especially in primary schools, because their training programmes may not include arts and interdisciplinary practices. In this regard, Silva-Hormazábal's (2023) study shows that the familiarity of lecturers with STEAM is low, and although their attitude is positive, their confidence to implement it is moderate, so they conclude that training is key for better implementation in the classroom. This is also highlighted in articles such as Marín et al. (2021), Peppler (2018) and Belbase et al. (2021). The study by Quigley et al. (2020) emphasises the need for design thinking training for lecturers and strategies to help students make connections between their lives and the problems they are solving. Finally, the study by Montés et al., (2023) underlines that the specialisation or profile of the lecturers not only influences the design of STEAM projects, but also how they are explained.
- D) Curriculum integration in STEAM education means adding arts and design to the usual mix of science, technology, engineering and mathematics, which requires changing the school curriculum to include these new elements (Belbase et al., 2021).

To overcome these barriers, it is essential to advocate for policies that provide more funding and flexibility, allowing schools to adopt STEAM programmes that are interdisciplinary and address the diverse needs of students, fostering creativity and equity.

3.1.2.4 Lines for the future

Future research should explore the long-term effects of STEAM education (Su et al., 2024). Marin et al. (2021) agree that STEAM studies lack a solid line of research over time.

Also, more research is needed to identify effective pedagogical approaches in STEAM (Su et al., 2024). Leavy (2022) adds the need for sound methodologies to study emerging technologies in STEAM.

González et al., 2021, in their study on educational robotics conclude that more systematic studies are needed on computational thinking and STEAM education, and to assess the impact on educational policies.

3.2 STEAM Education

In the systematic review on STEAM education, we describe the pedagogical characteristics studied in the literature whose results could be considered for designing the educational activities of the STEAMbrace project. In this section, the pedagogical process (methodologies, types of activities, strategies, technologies), curriculum and assessment are differentiated. A total of 36 articles have been selected for study. Annex 2 contains the bibliographical citations of the articles studied, and Annex 5 the comparative table with the data extracted.

It is worth mentioning that this study has been conducted under the approach that considers STEAM education as one that focuses on how teaching and learning takes place, with the aim of transforming education by making it more connected to real-world problems and fostering creativity and innovation through a blend of science, technology, engineering, arts and mathematics (Belbase et al., 2021).

From this perspective STEAM education includes two main parts (Belbase et al., 2021): the way lecturers teach (pedagogical process) and the way students' learning is tested (assessment), both designed to make learning more engaging and relevant to students' future careers and lives.

3.2.1 Pedagogical process

In terms of educational methodologies, emphasis is placed on hands-on learning, project-based learning, STEAM and interdisciplinary approaches (Rodriguez-Silva, 2023). Thus, Su et al. (2024), in their systematic review, find that most of the studies used technology-mediated learning and inquiry-based learning. This is echoed in the systematic review by Conde et al. (2020), Chistyakov et al. (2023) and Belbase et al. (2021). In fact, the latter point out that this approach helps students develop important skills, such as problem solving, critical thinking and teamwork, by working on projects that require them to use knowledge from different subjects together, which makes learning more interesting and useful.

The article by Dasuki et al. (2020) describes the phases and activities that could be included in a PjBL (Project Based Learning) design. It describes three phases for the development of this methodology in STEAM:

1) Planning: This phase involves identifying a problem or question, crafting the problem, and planning the learning process, including what will be learned and how it will be assessed. It is about setting the

stage for the project by deciding on the topic, questions, and the thinking process needed to explore the topic.

2) Testing: In this phase, students put their plans into action. They test their ideas or products and engage in self-directed learning. This means they learn by doing, exploring specific topics, and adapting their plans based on what they find.

3) Reflecting: The final phase focuses on reflecting on the project's outcomes. Students assess what they have learned and how they have learned it. This reflection helps them understand the project's impact and their growth through the process.

Krüger (2021), adds Research Based Learning as a methodology in STEAM. Lg, 2021, also emphasise inquiry-based learning as it allows lecturers to adapt the curriculum based on children's interests, strengths and readiness, fostering a hands-on learning environment in which children can explore and share their discoveries. All of these methods foster a dynamic, participatory environment that encourages creative thinking through constant practice and collaboration.

Ng (2022), in his review on the integration of STEAM in Education, underlines that when integrating STEAM subjects, we can consider four levels of integration: disciplinary, multidisciplinary, interdisciplinary, and transdisciplinary. In this regard, Montes et al. (2023) differentiate and describe the approaches in the literature when working with STEAM in education:

- The multidisciplinary approach involves learning content separately in each discipline, but within a common theme.
- The interdisciplinary approach combines content from at least two disciplines, making explicit connections.
- In the transdisciplinary approach, "the curriculum transcends individual disciplines" and knowledge and skills are applied in real-world situations.

But regardless of their level of integration, it should be ensured that all STEAM subjects receive sufficient attention and are taught in a way that makes sense together, rather than separately. As highlighted by Rodríguez-Silva (2023), interdisciplinary projects allow students to approach problems from various perspectives, integrating knowledge from different disciplines and skills. This approach not only stimulates creativity by connecting seemingly incongruent ideas, but also reflects the interconnected nature of real life. Thus, it is important that lessons connect with children's interests and help them see how STEAM topics are part of everyday life. This is also echoed in the study by Zarei (2021).

Research by Montés et al. (2023) shows that STEAM projects are hardly contextualised in real life, and that the design of these real contexts depends on the lecturer's training. In that line, Samaniego (2024) emphasises experiential learning, STEAM, and interdisciplinary approaches to creative thinking.

In short, all these methodologies not only challenge students to apply knowledge in tangible ways, but also cultivate essential 21st century skills such as critical thinking and problem solving (Rodriguez-Silva, 2023). In the same vein, Krüger, 2021, emphasises the use of gamification, games and social environments in STEAM activities for the development of 21st century skills. Indeed, Caspi et al. (2023), note that interest and enjoyment drive participation in programmes; concern for utility is less frequent.

There are also studies that have developed their own pedagogies for STEAM development. Lin (2021), proposes the STEAM (Scaffolding, Tutoring, Engaging, Argumentation, and Modelling) pedagogical model for implementing interdisciplinary STEAM curricula: 1) Scaffolding: lecturers help students by providing pathways for projects, including conducting field research and learning about green product design; 2) Tutoring: Each project group has a teacher who guides them through the project, making sure they understand and follow the necessary steps; 3) Engaging: students participate in activities that make them think and ask questions, helping them to go deeper into their projects; 4) Argumentation: students

discuss and debate issues, which helps them to understand different points of view and strengthen their arguments; Modelling: students create models or representations of their scientific ideas or concepts, which helps them to understand and explain them better.

Lin's (2021) study suggests that the STEAM model can be a useful guide for teaching secondary school students in an interdisciplinary curriculum. The model seems to be particularly effective in maintaining and even increasing students' motivation to learn over time.

In terms of **strategies** that can be used, Delgado (2022) highlights the use of pedagogical games, problem-based learning, the integration of educational robotics, the application of brainstorming, the use of mind maps, the implementation of creative dramatization and the adoption of interactive teaching platforms.

Regarding the type of **technology** to be used, virtual reality and educational robotics predominate (Silva-Díez et al., 2022; Chappell, 2022). The bibliometric study by Silva-Díez et al. (2022) on emerging technologies in STEM education shows that, in the last four years, virtual reality was the most widely used technology, accounting for 51.7% of all the documents analysed. It was followed by educational robotics, which accounted for 38.1% of the technologies used in the sample. Maker spaces, the Internet of Things (IoT) and analytics technologies, although less prevalent, appeared mainly in the most recent period from 2017, indicating their emerging status in the field.

Conde et al. (2020), in their review of educational robotics in the STEAM approach, conclude that the integration of robotics and mechatronics enhances engagement with STEAM education. In addition, technological advances make educational robotics more accessible in schools. In this regard, González et al., 2021, in their review on educational robotics, urge the use of active teaching methodologies such as gamification and collaborative work, as well as constructivist and constructionist pedagogies such as ProblemBL or ProjectBL.

3.2.2 Curriculum

Few articles talk about the curriculum followed for STEAM development, understanding curriculum by the competences, contents or description of developed projects that can be found in the selected articles.

In terms of content description, it is interesting to note the curriculum proposed by Lin (2021), in which the curriculum consisted of interdisciplinary projects involving science (biology, chemistry and earth science), technology (biotechnology, information technology and green technology), engineering (living technology, disaster prevention technology, electromechanical applications), art (scientific argumentation, scientific drawing, cultural creativity and scientific writing) and mathematics (logical reasoning).

For their part, the Hsiao team (2022) describe the design of a 10-week course in which, through the design and creation of an electric boat, students develop different STEAM contents under the PjBL and cognitive-affective interaction model (CAIM) methodology. Specifically, the course begins with an introduction to basic scientific principles (buoyancy, Newton's laws of motion and electricity), continues with the teaching of Arduino electronic components and programming, and ends with the design and construction of electric boats, facing and solving real-world problems.

Considering the variety of projects that can be designed in a STEAM curriculum, Chappell (2023), proposes cross-disciplinary projects to work on Ocean Literacy in Primary and Secondary Education. His study describes the following 6 projects developed in Denmark, Spain and England: (a) Students explore biodiversity through creative approaches and virtual reality (VR); (b) Students create and deploy fish nursery areas, where they design, build and track these habitats using 360 cameras and VR to

understand fish behaviours and support biodiversity; (c) Students learn about ocean adaptations by asking their own questions and using interdisciplinary methods, connecting with ocean experts through VR to understand how organisms survive in the ocean; d) In order to work on the issue of ocean plastics, students use creative pedagogies and digital technologies to learn about pollution and develop potential activism skills; e) Students learn key ideas about the oceans by visiting an aquarium and use virtual reality and augmented reality (AR) spaces to express their knowledge creatively; f) The last project helps students learn about the ocean and fish behaviour through AR games, encouraging them to ask questions and engage in thoughtful conversations.

In the same vein, the article by Quigley et al. (2020), describes relevant units for Kindergarten to Grade 5 problem-based work that connect to the lives of primary school students to improve engagement and learning outcomes. Among the projects described, the following are highlighted: (a) The importance of bees in food systems, the environment or causes of declining bee populations were explored, with a focus on the impact humans have on the environment and its relationship to climate change; (b) School cafeteria redesign and water quality issues related to population growth were addressed, with students investigating real-world problems such as improving the cafeteria experience and understanding the impact of population growth on water quality; (c) Life cycles and food webs, building a bee model for engineering, introducing hexagons in mathematics, creating a bee dance and a school mural project were part of a unit plan outlining interdisciplinary connections; d) Activities around life in the lake, such as creating murals, designing fishing devices, developing digital activity books, designing video games and programming robots to mimic fish life cycles, were used to engage students in STEAM learning.

3.2.3 Assessment

The interdisciplinary and competence-based nature of STEAM projects requires forms of assessment that allow us to know what, how, when and how much students are learning, in order to regulate the strategies, resources and activities that will allow us to obtain better results.

In this regard, Belbase et al. (2021) analyse the importance of developing new ways of assessing students in STEAM, going beyond traditional tests to include assessments that reflect the interdisciplinary and creative nature of education. Studies by Krüger (2021) and Zarei (2021) highlight the importance of formative assessment, collaboration and gamification in education.

However, it should be highlighted that few articles point out what assessment process has been used to assess students' competence development. And on too many occasions, the assessment of performance has been limited to a final questionnaire, moving away from process and formative assessment.

3.3 Study of inclusive aspects in relation to STEAM education.

The systematic review of the inclusive perspective in STEAM studies has been carried out by analysing the results of the scientific literature on the impact of STEAM/ STEM education on aspects such as the social, gender and learning gaps. A total of 25 articles have been selected for study. Annex 3 contains the bibliographic citations of the articles studied, and Annex 6 contains the comparative table with the data extracted.

The review of articles on the inclusive aspects of STEAM education in the scientific literature has shown that it promotes gender equality and diversity in fields such as technology and engineering. But, in addition, the inclusion of people at risk of social exclusion or with educational needs through STEAM programmes has also been shown to promote equal opportunities by providing accessible and personalised learning opportunities.

To this end, fostering curriculum flexibility and interdisciplinarity, along with providing multiple opportunities for students to cultivate their creativity, are key steps towards implementing STEAM programmes that are accessible to all, especially marginalised populations (Pearson, 2021). Along these lines, Aguilera (2021) concludes that more STEAM programmes are needed in contexts such as Latin America or countries where there is a gap in the scientific literature and that their development should begin in early childhood. In this regard, Belbase et al. (2021) point out that diverse and creative teaching methods can improve learning outcomes in populations considered at risk.

Lu et al., (2021) also design a PBL-oriented STEAM curriculum for students with learning difficulties and their results show that students with Learning Difficulties improve creative competence and their learning outcomes.

Special mention should be made of the gender perspective and the study of gender in STEAM scientific literature. The gender landscape in STEAM education has undergone significant changes, but the literature review shows that disparities remain, particularly in representation, equal pay and recognition of women (Ampartzaki, et al. 2022). Research indicates that women are significantly underrepresented in STEM careers, with UNESCO reporting that less than 30% of all STEM positions are held by women (UNESCO, 2019). Indeed, research indicates that women face numerous barriers in STEM, including stereotypes, lack of resources, role models and discrimination (Blackburn et al., 2019; Kenneth, 2022).

However, the integration of STEAM education can challenge and overcome entrenched gender stereotypes in society. Thus, STEAM/ STEM education plays a crucial role in contributing to women's engagement, confidence and representation in traditionally male-dominated fields (Sevilla et al., 2023). But, the inclusion of women in STEM/STEAM is not only a gender equity issue, but also essential to foster innovation, creativity and diverse perspectives in solving global challenges (Adams et al., 2022).

Specific educational interventions that have been shown to improve the inclusion of women in STEAM areas can be found in the literature. This is the case of design thinking workshops in Japan (Kijima et al., 2021), which have shown promise in changing young women's perceptions towards STEM, increasing their interest, confidence and their perceptions of STEM fields. Similarly, the STEAMpunk Girls programme in Australia has demonstrated the potential of STEAM education to increase girls' engagement with STEM through learning project and design thinking strategies, significantly increasing their confidence and motivation (Ng et al., 2020). Programmes that provide mentoring, parental support and participation in STEM learning environments from an early age have also been proposed to increase the number of women entering STEM careers (Areljung et al., 2021). These interventions are important as they address motivational patterns and expectancy-value theory beliefs (Atkinson, 1964) that enable women to overcome the challenges posed by gender stereotypes in STEM fields (Barkatsas et al., 2019).

The Hughes et al. study (2020) stresses that overcoming persistent gender disparities requires addressing social stereotypes, improving educational practices and providing favourable learning environments.

3.4 STEAM/STEM research methods

Finally, it was decided to include a section in the data collection of the literature review that responded to the STEAM/ STEM research methods used in the articles reviewed. Although no comparative analysis has been carried out in this section, the research designs and especially the questionnaires used to assess STEAM experiences, as well as the instruments for assessing STEAM competence in students, have been collected.

It is emphasised that mixed (quantitative-qualitative) research designs are commonly used to investigate the effectiveness of STEAM education (Su et al., 2024), with pre-post test designs, and sometimes with a control group.

Tests used to assess the effectiveness of STEAM programmes

- Knowledge Integration, Project Skills, and Self-Efficacy (KIPSSE) instrument (Lin 2018) to assess the competencies of students engaged in project-based learning: <u>https://link.springer.com/article/10.1007/s10956-017-9708-y/tables/4</u>
- Students' Motivation Toward Science Learning (SMTSL) questionnaire (Tuan et al. 2005)
- Ad-hoc tests designed for the assessment of knowledge
- Interviews

Tests used for the assessment of STEAM projects

- Although Quigley et al (2020) design assessment rubrics aimed at observing lecturers and their materials, their indicators could be included in the assessment of activities in terms of:
 - Integration of STEAM areas
 - The manner in which the PjBL is presented
 - The way in which project activities promote skills for PjBL
- Pérez-Torres' team (2024) assesses 46 STEAM projects developed in secondary education in Spain. For this purpose, they design a **STEM PBL rubric** that serves as a tool for the assessment and categorisation of instructional designs within the STE(A)M PBL framework. Within this structure, 21 criteria were organised into 6 dimensions.
- Bati, K., Yetişir, M. I., Çalişkan, I., Güneş, G., & Gül Saçan, E. (2018). Teaching the concept of time: A steam-based program on computational thinking in science education. *Cogent Education*, 5(1), 1507306.
 - They implement concurrent-triangulation design (Creswell, 2009) as mixed methodology. Instruments: Observation notes, Semi-structured interviews, Computational thinking test by Weintrop et al. (2014), students diaries.
- Hsiao, H.-S.; Chen, J.-C.; Chen, J.-H.; Zeng, Y.-T.; Chung, G.-H (2022). An Assessment of Junior High School Students' Knowledge, Creativity, and Hands-On Performance Using PBL via Cognitive-Affective Interaction Model to Achieve STEAM. *Sustainability, 14,* 5582.
 - STEAM Knowledge Examination Paper, STEAM-KEP, Creativity Assessment Packet (CAP) by Williams (1972), CPAM to evaluate hand on performance (Besemer, 1981).
 - Besemer, S.P.; Treffinger, D.J. Analysis of creative products: Review and synthesis. J. Creat. Behav. **1981**, 15, 158-178.
 - Williams, F.E. Identifying and Measuring Creative Potential; Educational Technology Publications: Englewood Cliffs, NJ, USA, 1972.
- Huang, X., & Qiao, C. (2022). Enhancing computational thinking skills through artificial intelligence education at a STEAM high school. *Science & Education*, 1-21.
 - Korkmaz et al. (2017) developed a scale to determine the levels of Computational Thinking skills.

- o Students' Motivation Toward Science Learning (SMTSL) proposed by Tuan et al. (2005).
- Knowledge integration, project skills, and self-efficacy (KIPSSE) instrument put forward by Lin (2018) to measure the self-efficacy.
- Quigley, C. F., Herro, D., King, E., & Plank, H. (2020). STEAM designed and enacted: Understanding the process of design and implementation of STEAM curriculum in an elementary school. *Journal of Science Education and Technology*, *29*(4), 499-518.
 - STEAM observational rubric to understand how teachers design and implement STEAM learning environments, and teacher reflections.
- Lu, S. Y., Lo, C. C., & Syu, J. Y. (2022). Project-based learning-oriented STEAM: The case of micro-bit paper-cutting lamp. *International Journal of Technology and Design Education*, 32(5), 2553-2575.
 - Revised version of Creativity Assessment Packet done by Lin and Wang (1994)
- Greca Dufranc, I. M., Ortiz Revilla, J., & Arriassecq, I. (2021). Design and assessment of a STEAM teaching-learning sequence for Primary Education. *Eureka Journal of Science Education and Popularization*, *18*(1), 1-20.
 - Participant observation through the recording of field notes (Spradley 2016) by the researcher and teachers immersed in the teaching-learning context and the material developed by the students (Massot Lafon, Dorio Alcaraz and Sabariego Puig 2004).
- Lage-Gómez, C., & Ros, G. (2023). How transdisciplinary integration, creativity and student motivation interact in three STEAM projects for gifted education? *Gifted Education International*, *39*(2), 247-262.
 - A questionnaire (Supplementary Appendix 2) to assessment student's perception about transdisciplinary integration, motivation, and creativity of the projects.
 - Participant observation carried out by the five teachers and researchers and collected in their class diary through the established categories.
 - Observation of the lessons video recordings by the researchers
 - Semi structured group interviews
- Cabello, V. M., Martínez, M. L., Armijo, S., & Maldonado, L. (2021). Promoting STEAM learning in the early years: "Pequeños Científicos" Program. *LUMAT: International Journal on Math, Science and Technology Education, 9*(2), 33-62.
 - Gómez-Motilla & Ruiz-Gallardo's (2016) attitude survey to assess attitudes towards science in early childhood education for the Spanish speaking population.
 - o Class observation protocol of developed by the PentaUC program
 - Narratives, anecdotal records.
- Chang, C. Y., Du, Z., Kuo, H. C., & Chang, C. C. (2023). Investigating the Impact of Design Thinking-Based STEAM PBL on Students' Creativity and Computational Thinking. *IEEE Transactions on Education*.
 - Torrance Test of Creative Thinking

- o International Challenge on Informatics and Computational Thinking
- Casado Fernández, R., & Checa Romero, M. (2020). Robotics and STEAM Projects: Developing creativity in Primary Education classrooms. *Pixel-Bit*.
 - CREA Creative Intelligence Test (Corbalán et al., 2003).
- Szabó, T., Babály, B., Pataiová, H., & Kárpáti, A. (2023). Development of spatial abilities of preadolescents: What works?. *Education Sciences*, 13(3), 312.
 - Test for Creative Thinking/Drawing Production (TCT/DP), an instrument developed by Klaus Urban and Hans Jellen, standardised and regularly used in 19 countries.
- DeJarnette, N. K. (2018). Implementing STEAM in the Early Childhood Classroom. *European Journal of STEM Education, 3*(3), 18. https://doi.org/10.20897/ejsteme/3878
 - Teachers' Comfort with STEM Instruction
- Suryanti, Nursalim, M., Choirunnisa, N. L., & Yuliana, I. (2024). STEAM-project-based learning: A catalyst for elementary school students' scientific literacy skills. *European Journal of Educational Research, 13*(1), 1-14. https://doi.org/10.12973/eu-jer.13.1.1
 - Scientific Literacy Test (SLT) Questions focus on a) defining scientific phenomena, (b) evaluating and designing scientific studies, and (c) analysing data and scientific evidence.
- Anwari I. et al. (2016) Implementation of learning & assessment via -12 STEM education, 1.
- Lin Z. et al. (2022) Evaluating student's creative thinking in STEAM education: model construction and validation. ICEDS'22, ACM, NY, USA, 96 103.
- Hsu T.C., et al. (2022) A validity and reliability study of the formative model for the indicators of STEAM education creations. Educ. Inf. Technol.
- Herro, D., Quigley, C., Andrews, J., & Delacruz, G. (2017). Co-Measure: developing an assessment for student collaboration in STEAM activities. *International journal of STEM education*, *4*, 1-12.

Tests used for the assessment of STEAM/STEM competence

- Chen, S., & Ding, Y. (2023). Assessing the Psychometric Properties of STEAM Competence in Primary School Students: A Construct Measurement Study. *Journal of Psychoeducational Assessment*, *41*(7), 796-810.
- Arikan S., Erktin E., Pesen M. (2022) Development and Validation of a STEM Competencies Assessment Framework. *Int. J. Sci. Math., 20*, 1-24.

Other

- Silva-Hormazábal (2023): Questionnaire to assess lecturers' self-perception of their knowledge, attitudes and confidence in implementing integrated STEAM education.

4 Conclusions

The main objective of this task has been to carry out a systematic review of European education systems and associated, led by EHU and supported by EDE and EFZG, to obtain the latest indicators and scales related to STE(A)M education focusing on STE(A)M approach in standard education.

Given the breadth of the topics to be studied that the partners considered important in this review, it was decided to broaden the study and carry out different systematic reviews. Specifically, three research topics were delimited whose results would be beneficial for reviewing the evolution that STEM/ STEAM education has had at European and international level, analysing the characteristics of the educational proposals with the most scientific evidence, and identifying the benefits that could serve as a basis for the educational proposals to be designed, as well as the methodological procedure for their implementation and assessment.

In the systematic review and bibliometric analysis carried out on the trends and evolution of STEAM Education, the consolidation of the STEAM concept at the international level seems clear, as the data indicate that in recent years the inclusion of the Arts within the STEM approach has been reinforced worldwide. However, the inclusion of the Arts is not clear in the articles studied and is approached from two perspectives in the literature: from the inclusion of the Arts discipline and its contents; or from the inclusion of creativity, as a necessary skill for flexibility in solving complex problems. On the other hand, the bibliometric data show that, although the studies on STEAM/ STEM in Education at European level reach 34% of the international ones, most of them are in the Spanish context. This contrasts with all the proposals that the EU has put in place to promote STEAM Education in member countries; the policies and strategies of the European Union for the development of STEM education, the investment and economic support to promote STEM education or the implementation of programmes such as Horizon. Erasmus+, Science Education Partnerships, STEM School Label, EU Code Week, Girls in STEM... are clear examples of these efforts. Although these data can be interpreted in different ways, it could be interesting to strengthen the research aspects in European programmes and projects developed within the STEAM education framework, as well as to reinforce the methodological design that makes it possible to publish the results of the projects with high quality, increasing their visibility at an international level.

Finally, we highlight that most studies already associate the Arts with the STEM field, and that the development of creativity, interdisciplinarity and learning methods are emerging hotspots of study in the literature.

From the systematic review of the *characteristics of effective educational approaches* (experiences), it is concluded that, in most research, the study of STEAM competence is associated with the development of other 21st century skills and/or key competences (such as computational thinking, creative thinking, group work, problem solving, critical thinking, positive attitude). This is one of the reasons why most studies measure how the development of STEAM/ STEM learning influences the development of other types of skills. This leads us to suggest that in the educational activities that are designed, as well as in the scientific methodology that is defined to assess the effectiveness of educational interventions, other skills, competences and attitudes should be taken into account as intentions and as study variables.

In terms of methodology, Problem-Based Learning receives the most scientific support, including group work activities for problem solving, focusing on topics close to the learner and from an interdisciplinary or transdisciplinary perspective.

With regard to assessment, process and formative assessment are considered appropriate and comprehensive in the current methodology. However, few articles describe the process of learning assessment, and most of them are reduced to the application of knowledge questionnaires that have little to do with process and formative assessment.

Finally, and taking into account the barriers and future lines of action identified in this research, the projects and educational proposals that are designed must be easily implemented by the teachers in their curricula. There are few articles describing the areas and contents developed in each discipline of STEAM; however, considering that some official curricula (such as the Spanish one) define minimum basic knowledge, it would be advisable to make sure that the contents that will be developed in an interdisciplinary way will be transferable in the participating countries, facilitating their integration and implementation in classroom planning. We should also address interdisciplinarity in STEAM projects, as this is a feature that has been presented time and again as a determining factor in tackling problems from a real and holistic viewpoint. Furthermore, we should also take into account that one of the barriers in the implementation of STEAM projects is the lack of training of the lecturers, so our proposals should have resources to facilitate their implementation.

Considering the two previous points, it would be interesting to standardise the pedagogical design of the activities to be designed, which would facilitate the validation of the activities, as well as the definition of a precise research methodology for the assessment of their effectiveness. This would enable replicability and visibility in the educational and scientific context.

Finally, the literature review on the **Benefits of STEAM integration in the curriculum with respect to achievement, gender and inclusion** concludes that the STEAM approach has the potential to make STEAM fields more accessible, relevant and attractive to a diversity of students, which may contribute to greater inclusion of students at risk of exclusion, students with diverse educational needs or girls in these disciplines.

Although in the STEAMbrace project there are other spaces where the gender perspective will be explored in greater depth, the review carried out in this first task concludes that STEAM/ STEM education offers substantial benefits to women by fostering engagement, confidence and representation. It underlines that overcoming gender disparities requires addressing social stereotypes and improving educational practices. The studies reviewed include strategies such as peer mentoring, inclusion of female role models, participation in STEAM learning environments, and social and family support, to increase women's interest, confidence and positive attitudes towards STEAM.

We would like to stress again that this is not a single systematic review. This review has been very broad, giving a greater focus to what could guide us in the STEAMbrace project. The study allows us to visualise the STEAM evolution in Europe in relation to the world, giving us the route to follow in order to make visible from a scientific point of view the efforts that are being made in Europe regarding STEM/STEAM education. It also describes the pedagogical characteristics with the most scientific evidence that we should consider when designing and implementing STEAM activities. Finally, it provides us with strategies to consider in order to promote the presence and interest of women in these disciplines, as well as to favour the inclusion of all students.

5 Document references additional to those used in the review

Atkinson, J. W. (1964). An introduction to motivation. Van Nostrand.

European Commission. (2019). European Union strategy for STEM education. <u>https://ec.europa.eu/education/policies/stem_es</u>

- Gómez-Luna, E., Navas, D. F., Aponte-Mayor, G., & Betancourt-Buitrago, L. A. (2014). Literature review methodology for scientific and information management, through its structuring and systematization. *DYNA*, *81*(184), 158-163. <u>https://doi.org/10.15446/dyna.v81n184.37066</u>
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *Annals of Internal Medicine*, 151(4), 264-269. <u>https://doi.org/10.7326/0003-4819-151-4-200908180-00135</u>
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Alonso-Fernandez, S. (2021). PRISMA 2020 statement: An updated guideline for the reporting of systematic reviews. *Revista Española de Cardiología, 74*(9), 790-799. <u>https://doi.org/10.1016/j.recesp.2021.06.016</u>
- Smith, B., et al. (2019). Enhancing creativity through the integration of arts in STEM education. International Journal of STEM Education, 6(4), 278-291. <u>https://doi.org/10.1186/s40594-019-0192-z</u>

6 Annex 1. References selected in the research topic Evolution of STEAM in Education

- Aguilera, D., & Ortiz-Revilla, J. (2021). STEAM education and student creativity: A systematic literature review. *Education Sciences*, *11*(7), 331. <u>https://doi.org/10.3390/educsci11070331</u>
- Belbase, S., Mainali, B. R., Kasemsukpipat, W., Tairab, H., Gochoo, M., & Jarrah, A. (2022). At the dawn of science, technology, engineering, arts, arts, and mathematics (STEAM) education: Prospects, priorities, processes, and problems. *International Journal of Mathematical Education in Science* and Technology, 53(11), 2919-2955. <u>https://doi.org/10.1080/0020739X.2021.1922943</u>
- Caspi, A., Gorsky, P., Nitzani-Hendel, R., & Shildhouse, B. (2023). STEM-oriented primary school children: participation in informal STEM programmes and career aspirations. *International Journal of Science Education*, 45(11), 923-945. https://doi.org/10.1080/09500693.2023.2177977
- Conde, M. A., Rodriguez-Sedano, F. J., Fernandez-Llamas, C., Goncalves, J., Lima, J., & Garcia-Penalvo,
 F. J. (2021). Fostering STEAM through challenge-based learning, robotics, and physical devices:
 A systematic mapping literature review. *Computer Applications in Engineering Education, 29*(1), 46-65. https://doi.org/10.1002/cae.22354
- English, L. D. (2017). Advancing elementary and middle school STEM education. *International Journal* of Science and Mathematics Education, 15, S5-S24. <u>https://doi.org/10.1007/s10763-017-9802-</u>X
- Fernández, M. O. G., González, Y. A. F., & López, C. M. (2021). Overview of educational robotics in favour of STEAM learning. *Eureka Journal on Science Education and Outreach*, 18(2), 230101-230123. 10.25267/EUREKA.2021.v18.i2.8
- Garcia-Fuentes, O., Raposo-Rivas, M., & Martinez-Figueira, M. (2022). STEAM in childhood education: Analysis of content of the official curriculum. *Profesorado-Revista De Curriculum Y Formacion De Profesorado, 26*(3), 507-526. <u>https://doi.org/10.30827/profesorado.v26i3.21571</u>
- Garcia-Fuentes, O., Raposo-Rivas, M., & Martinez-Figueira, M. (2023). STEAM education: Review of literature. *Revista Complutense De Educacion, 34*(1), 191-202. <u>https://doi.org/10.5209/rced.77261</u>
- Krüger Mariano, W., & Chiappe, A. (2021). 21st-century skills and their relationship to STEAM learning environments: a review. RED. *Revista de Educación a Distancia, 66* (21). DOI: <u>http://dx.doi.org/10.6018/red.470461</u>
- Leavy, A., Dick, L., Meletiou-Mavrotheris, M., Paparistodemou, E., & Stylianou, E. (2023). The prevalence and use of emerging technologies in STEAM education: A systematic review of the literature. *Journal of Computer Assisted Learning*. <u>https://doi.org/10.1111/jcal.12806</u>
- Liu, C., & Wu, C. -. (2022). STEM without art: A ship without a sail. *Thinking Skills and Creativity, 43*. https://doi.org/10.1016/j.tsc.2021.100977
- Marín-Marín, J. A., Moreno-Guerrero, A. J., Dúo-Terrón, P., & López-Belmonte, J. (2021). STEAM in education: a bibliometric analysis of performance and co-words in Web of Science. *International Journal of STEM Education*, 8(1), 41. <u>https://doi.org/10.1186/s40594-021-00296-x</u>

- Ng, A., Kewalramani, S., & Kidman, G. (2022). Integrating and navigating STEAM (inSTEAM) in early childhood education: An integrative review and inSTEAM conceptual framework. *Eurasia Journal of Mathematics, Science and Technology Education, 18*(7). https://doi.org/10.29333/ejmste/12174
- Pearson, R. (2022). STEAM Education and the Whole Child: Examining Policy and Barriers. International Journal of The Whole Child, 7(02), 109-120. 10.55894/ijtwc.v7i2.104
- Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 31-43. <u>https://doi.org/10.1016/j.tsc.2018.10.002</u>
- Phuong, N. L., Hien, L. T. T., Linh, N. Q., Thao, T. T. P., Pham, H. -. T., Giang, N. T., & Thuy, V. T. (2023). Implementation of STEM education: A bibliometrics analysis from case study research in scopus database. Eurasia Journal of Mathematics, Science and Technology Education, 19(6). <u>https://doi.org/10.29333/ejmste/13216</u>
- Prahani, B. K., Nisa, K., Nurdiana, M. A., Krisnaningsih, E., Amiruddin, M. Z. B., & Sya'roni, I. (2023). Analyze of steam education research for three decades. Journal of Technology and Science Education, 13(3), 837-856. <u>https://doi.org/10.3926/JOTSE.1670</u>
- Razi, A., & Zhou, G. (2022). STEM, iSTEM, and STEAM: What is next?. International Journal of Technology in Education, 5(1), 1. DOI: <u>http://dx.doi.org/10.6018/red.470461</u>
- Rodrigues-Silva, J., & Alsina, Á. (2023). Conceptualising and framing STEAM education: What is (and what is not) this educational approach? *Texto Livre, 16*. <u>https://doi.org/10.1590/1983-3652.2023.44946</u>
- Samaniego, M., Usca, N., Salguero, J., & Quevedo, W. (2024). Creative thinking in art and design education: A systematic review. *Education Sciences*, 14(2), 192. https://doi.org/10.3390/educsci14020192
- Silva-Díaz, F., Fernández-Ferrer, G., Vásquez-Vilchez, M., Ferrada, C., Narváez, R., & Carrillo-Rosúa, J. (2022). Emerging technologies in STEM education. A bibliometric analysis of publications in scopus & WoS (2010-2020). Bordon. Revista De Pedagogia, 74(4), 25-44. <u>https://doi.org/10.13042/Bordon.2022.94198</u>
- Su, J., Yim, I. H. Y., Wegerif, R., & Wah Chu, S. K. (2024). STEAM in early childhood education: a scoping review. Research in Science & Technological Education, 1-17. 10.1080/02635143.2024.2161158
- Zarei, M., Zeinalipour, H., & Samawi, S. A. W. (2022). Identify the components of the STEAM curriculum in elementary school. *International Journal of Pediatrics-Mashhad, 10*(4), 15789-15801. https://doi.org/10.22038/IJP.2021.57034.4471
- White, D., & Delaney, S. (2021). Full STEAM Ahead, but Who Has the Map for Integration-A PRISMA Systematic Review on the Incorporation of Interdisciplinary Learning into Schools. LUMAT: International Journal on Math, Science and Technology Education, 9(2), 9-32. 10.31129/LUMAT.9.2.1447

7 Annex 2. References selected in the research topic STEAM Education

- Bati, K., Yetişir, M. I., Çalişkan, I., Güneş, G., & Saçan, E. G. (2018). Teaching the concept of time: A steam-based program on computational thinking in science education. *Cogent Education*, 5(1), 1507306. <u>https://doi.org/10.1080/2331186X.2018.1507306</u>
- Bureekhampun, S., & Mungmee, T. (2020). STEAM education for preschool students: Patterns, activity designs and effects. *Journal for the Education of Gifted Young Scientists*, *8*(3), 1201-1212. https://doi.org/10.17478/JEGYS.775835
- Burnard, P., Colucci-Gray, L., & Cooke, C. (2022). Transdisciplinarity: Re-visioning how sciences and arts together can enact democratizing creative educational experiences. *Review of Research in Education, 46*(1), 166-197. <u>https://doi.org/10.3102/0091732X221084323</u>
- Cabello, V. M., Loreto Martínez, M., Armijo, S., & Maldonado, L. (2021). Promoting STEAM learning in the early years: "Little scientists" program. *Lumat*, 9(2), 33-62. https://doi.org/10.31129/lumat.9.2.1401
- Castro-Santos, L., Guillén, F. P., Lamas-Galdo, I., García-Diez, A. I., Díaz, J. E., Boedo-Vilabella, L., . . . Filgueira-Vizoso, A. (2023). STEMbach experiences at higher education. *Open Education Studies*, *5*(1). <u>https://doi.org/10.1515/edu-2022-0178</u>
- Chang, C. Y., Du, Z., Kuo, H. C., & Chang, C. C. (2023). Investigating the Impact of Design Thinking-Based STEAM PBL on Students' Creativity and Computational Thinking. *IEEE Transactions on Education.* 10.1109/TE.2023.3263561
- Chappell, K., & Hetherington, L. (2023). Creative pedagogies in digital STEAM practices: Natural, technological and cultural entanglements for powerful learning and activism. *Cultural Studies of Science Education*, doi:10.1007/s11422-023-10200-4
- Chistyakov, A. A., Zhdanov, S. P., Avdeeva, E. L., Dyadichenko, E. A., Kunitsyna, M. L., & Yagudina, R. I. (2023). Exploring the characteristics and effectiveness of project-based learning for science and STEAM education. Eurasia Journal of Mathematics, Science and Technology Education, 19(5) <u>https://doi.org/10.29333/ejmste/13128</u>
- Chung, S. K., & Li, D. (2021). Issues-Based STEAM education: A case study in a Hong Kong secondary school. International *Journal of Education & the Arts, 22*(3). Retrieved from http://doi.org/10.26209/ijea22n3
- Danielson, R. W., Grace, E., White, A. J., Kelton, M. L., Owen, J. P., Saba Fisher, K., Mozo, M. (2022). Facilitating systems thinking through arts-based STEM integration. *Frontiers in Education*, 7. <u>https://doi.org/10.3389/feduc.2022.915333</u>
- Delgado, C. (2022). Teaching strategies to strengthen creative thinking in the classroom. A metaanalytical study. *Rev. Innova Educ., 4*, 51-64. 10.35622/j.rie.2022.01.004.en
- DeJarnette, N. K. (2018). Implementing STEAM in the early childhood classroom. European Journal of STEM Education, 3(3), 18. <u>https://doi.org/10.20897/ejsteme/3878</u>

- Diego-Mantecon, J., Blanco, T., Ortiz-Laso, Z., & Lavicza, Z. (2021). STEAM projects with KIKS format for developing key competences. *Comunicar, 29*(66), 33-43. <u>https://doi.org/10.3916/C66-2021-03</u>
- Fernández, R. C., & Romero, M. C. (2020). Robotics and STEAM projects: Development of creativity in a primary school classroom. *Pixel-Bit, Revista De Medios Y Educacion, 58*, 51-69. https://doi.org/10.12795/pixelbit.73672
- Greca, I. M., Ortiz-Revilla, J., & Arriassecq, I. (2021). Design and evaluation of a STEAM teachinglearning sequence for primary education. *Revista Eureka Sobre Ensenanza Y Divulgacion De Las Ciencias,* 18(1), 1802. https://doi.org/10.25267/Rev Eureka ensen divulg cienc.2021.v18.i1.1802
- Hawari, A. D. M., & Noor, A. I. M. (2020). Project based learning pedagogical design in STEAM art education. *Asian Journal of University Education, 16*(3), 102-111.
- Hsiao, H., Chen, J., Chen, J., Zeng, Y., & Chung, G. (2022). An assessment of junior high school students' knowledge, creativity, and hands-on performance using PBL via cognitive-affective interaction model to achieve STEAM. *Sustainability*, 14(9), 5582. <u>https://doi.org/10.3390/su14095582</u>
- Huang, X., & Qiao, C. (2022). Enhancing computational thinking skills through artificial intelligence education at a STEAM high school. Science & Education. https://doi.org/10.1007/s11191-022-00392-6Jordan, A., Knochel, A. D., Meisel, N., Reiger, K., & Sinha, S. (2021). Making on the move: Mobility, makerspaces, and art education. *International Journal of Art & Design Education*, 40(1), 52-65. <u>https://doi:10.1111/jade.12333</u>
- Kwack, H. R., & Jang, E. J. (2021). Development and application of a steam program using classroom wall gardens. *Journal of People, Plants, and Environment, 24*(4), 365-376. https://doi.org/10.11628/KSPPE.2021.24.4.365
- Lim, K. (2022). Expanding multimodal artistic expression and appreciation methods through integrating augmented reality. *International Journal of Art & Design Education, 41*(4), 562-576. https://doi.org/10.1111/jade.12434
- Lin, C. -., & Tsai, C. -. (2021). The effect of a pedagogical STEAM model on students' project competence and learning motivation. *Journal of Science Education and Technology, 30*(1), 112-124. <u>https://doi.org/10.1007/s10956-020-09885-x</u>
- Lu, S. -., Lo, C. -., & Syu, J. -. (2022). Project-based learning oriented STEAM: The case of micro-bit paper-cutting lamp. *International Journal of Technology and Design Education, 32*(5), 2553-2575. <u>https://doi.org/10.1007/s10798-021-09714-1</u>
- Montes, N., Zapatera, A., Ruiz, F., Zuccato, L., Rainero, S., Zanetti, A., . . . Marathefti, M. (2023). A novel methodology to develop STEAM projects according to national curricula. *Education Sciences*, 13(2), 169. <u>https://doi.org/10.3390/educsci13020169</u>
- Nursalim, M., Choirunnisa, N. L., & Yuliana, I. (2024). STEAM-project-based learning: A catalyst for elementary school students' scientific literacy skills. *European Journal of Educational Research*, 13(1), 1-14. <u>https://doi.org/10.12973/eu-jer.13.1.1</u>
- Ozkan, G., & Umdu Topsakal, U. (2021). Investigating the effectiveness of STEAM education on students' conceptual understanding of force and energy topics. *Research in Science & Technological Education, 39*(4), 441-460. <u>https://doi.org/10.1080/02635143.2020.1769586</u>
- Piila, E., Salmi, H., & Thuneberg, H. (2021). STEAM-learning to mars: Students' ideas of space research. *Education Sciences*, *11*(3), 122. <u>https://doi.org/10.3390/educsci11030122</u>

Union or European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

- Quigley, C. F., Herro, D., King, E., & Plank, H. (2020). STEAM designed and enacted: Understanding the process of design and implementation of STEAM curriculum in an elementary school. *Journal of Science Education and Technology, 29*(4), 499-518. <u>https://doi.org/10.1007/s10956-020-09832-w</u>
- Silva-Hormazabal, M., & Alsina, A. (2023). Exploring the impact of integrated STEAM education in early childhood and primary education teachers. *Education Sciences*, *13*(8), 842. https://doi.org/10.3390/educsci13080842
- Szabó, T., Babály, B., Pataiová, H., & Kárpáti, A. (2023). Development of spatial abilities of preadolescents: What works? *Education Sciences*, 13(3). <u>https://doi.org/10.3390/educsci13030312</u>
- Torres, M. P., Lagaron, D. C., & Bargallo, C. M. (2024). Evaluation of STEAM project-based learning (STEAM PBL) instructional designs from the STEM practices perspective. *Education Sciences*, 14(1), 53. <u>https://doi.org/10.3390/educsci14010053</u>
- Trowsdale, J., & Davies, R. (2024). How a particular STEAM model is developing primary education: Lessons from the teach-make project (england). *Journal of Research in Innovative Teaching and Learning*. <u>https://doi.org/10.1108/JRIT-10-2022-0066</u>
- Xue, H. (2022). New integrated teaching mode for labor education course based on STEAM education. *International Journal of Emerging Technologies in Learning, 17*(2), 128-142. <u>https://doi.org/10.3991/IJET.V17I02.28461</u>
- Zhou, Q., Jiang, J., Li, X., Hou, H., & Yue, S. (2022). Designing an intelligent firefighting toy car using AR technology and STEAM. *Mobile Information Systems*, 2022, 2599715. <u>https://doi.org/10.1155/2022/2599715</u>
- Zorenböhmer, C., Missoni-Steinbacher, E., Jeremias, P., Öttl, U., & Resch, B. (2022). STEAM stories: A co-creation approach to building STEAM skills through stories of personal interest. *GI_Forum*, *10*(1), 135-149. <u>https://doi.org/10.1553/giscience2022_01_01_s135</u>

8 Annex 3. References selected in the research topic Inclusion in STEAM Education

- Adams, E. C., Oduor, P., Wahome, A., Tondapu, G., & Nairobi, K. (2022). Reflections on two years teaching earth science at the women in science (WISCI) STEAM CAMP the regional centre of mapping of resources for development. *Journal of Women and Minorities in Science and Engineering 28(1),* 23–39. <u>https://doi.org/10.1615/JWomenMinorScienEng.2021033536</u>
- Ampartzaki, M., Kalogiannakis, M., Papadakis, S., & Giannakou, V. (2022). Perceptions about STEM and the arts: Teachers', parents' professionals' and artists' understandings about the role of arts in STEM education. In STEM, Robotics, Mobile Apps in Early Childhood and Primary Education: Technology to Promote Teaching and Learning (pp. 601-624). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0568-1_25
- Arcand, K. K., Price, S. R., Smith, L. F., & Hsu, B. (2022). Women in STEM interview analysis: Encouraging young female learners in STEM pathways. *Communication, Society and Media, 5*(3), p17. <u>https://doi.org/10.22158/csm.v5n3p17</u>
- Areljung, S., & Günther-Hanssen, A. (2022). STEAM education: An opportunity to transcend gender and disciplinary norms in early childhood? *Contemporary Issues in Early Childhood, 23*(4), 500-503. <u>https://doi.org/10.1177/14639491211051434</u>
- Bălan, S. M., & Stanciu, C. (2021). Gender stereotypes and STEAM education (2021). International Journal of Advanced Studies in Sexology, 3(2) <u>https://doi.org/10.46388/ijass.2021.13.48</u>
- Barkatsas, T., Cooper, G., & Mclaughlin, P. Investigating Female Students' Stem-Related Attitudes, Engagement and Work-Intentions When Involved in a University Workshop Initiative. *Journal of Research in STEM Education, 5*(1), 60–74. <u>https://doi.org/10.51355/jstem.2019.63</u>
- Blackburn, H., & Heppler, J. (2019). Women in STEM in higher education: A citation analysis of the current literature. *Science and Technology Libraries, 38*(3), 261-271. <u>https://doi.org/10.1080/0194262X.2019.1645080</u>
- Charlesworth, T. E. S., & Banaji, M. R. (2019). *Gender in science, technology, engineering, and mathematics: Issues, causes, solutions* Society for Neuroscience. <u>https://doi.org/10.1523/JNEUROSCI.0475-18.2019</u>
- Hernández Herrera, C. A. (2021). STEM women and their appraisals of their university careers. Nova Scientia, 13(27) <u>https://doi.org/10.21640/ns.v13i27.2753</u>
- Hughes, R., Schellinger, J., Billington, B., Britsch, B., & Santiago, A. (2020). A summary of effective gender equitable teaching practices in informal STEM education spaces. *The Journal of STEM Outreach*, 3(1) <u>https://doi.org/10.15695/jstem/v3i1.16</u>
- Idrizi, E., Filiposka, S., & Trajkovikj, V. (2023a). Gender impact on STEM online learning- a correlational study of gender, personality traits and learning styles in relation to different online teaching modalities. *Multimedia Tools and Applications, 82*(19), 30201-30219. <u>https://doi.org/10.1007/s11042-023-14908-x</u>
- Kenneth, A. (2022). Gap in STEM education: Why is there a decline in women participation? *International Journal on Research in STEM Education*, 4(1), 55-63. <u>https://doi.org/10.31098/ijrse.v4i1.369</u>
- Kijima, R., Yang-Yoshihara, M., & Maekawa, M. S. (2021). Using design thinking to cultivate the next generation of female STEAM thinkers. *International Journal of STEM Education, 8*(1) <u>https://doi.org/10.1186/s40594-021-00271-6</u>

- Kusharyadi, R., Rusyid, H. K., & Siahaan, E. Y. S. (2023). Women in STEM in Higher Educations: Good practices of attraction, access, and retainment in higher education: edited by Francisco José García-Peñalvo, Alicia García-Holgado, Angeles Dominguez, and Jimena Pascual, Singapore, Springer, xiv + 197 pp., *Women's History Review, 32*(6), 917-919. https://doi.org/10.1080/09612025.2023.2231178
- López-Iñesta, E., Botella, C., Rueda, S., Forte, A., & Marzal, P. (2020). Towards breaking the gender gap in science, technology, engineering and mathematics. *Revista Iberoamericana De Tecnologias Del Aprendizaje*, *15*(3), 233-241. <u>https://doi.org/10.1109/RITA.2020.3008114</u>
- Millet, M., & Roberts, T. (2023). Preparing all girls to change the world through STEMM. Open Journal of Social Sciences, 11(03), 285-292. <u>https://doi.org/10.4236/jss.2023.113020</u>
- Ng, W., & Fergusson, J. (2020). *Engaging high school girls in interdisciplinary STEAM* International Council of Associations for Science Education (ICASE). <u>https://doi.org/10.33828/sei.v31.i3.7</u>
- Oliveros-Ruiz, M. A. (2019). STEAM as a tool to encourage engineering studies. *Revista científica*, (35), 158-166. : <u>https://doi.org/10.14483/23448350.14526</u>
- Ortiz-Martínez, G., Vázquez-Villegas, P., Ruiz-Cantisani, M., Delgado-Fabián, M., Conejo-Márquez, D. A., & Membrillo-Hernández, J. (2023). Analysis of the retention of women in higher education STEM programs. *Humanities and Social Sciences Communications, 10*(1) <u>https://doi.org/10.1057/s41599-023-01588-z</u>
- Sevilla, M. P., Luengo-Aravena, D., & Farías, M. (2023). Gender gap in STEM pathways: The role of secondary curricula in a highly differentiated school system-the case of chile. *International Journal* of STEM Education, 10(1) <u>https://doi.org/10.1186/s40594-023-00450-7</u>
- UNESCO (2019). Women in science. In <u>https://uis.unesco.org/sites/default/files/documents/fs55-women-in-science-2019-en.pdf</u>
- Aguilera, D., & Ortiz-Revilla, J. (2021). STEAM education and student creativity: A systematic literature review. *Education Sciences*, *11*(7), 331. <u>https://doi.org/10.3390/educsci11070331</u>
- Belbase, S., Mainali, B. R., Kasemsukpipat, W., Tairab, H., Gochoo, M., & Jarrah, A. (2022). At the dawn of science, technology, engineering, arts, arts, and mathematics (STEAM) education: Prospects, priorities, processes, and problems. *International Journal of Mathematical Education in Science* and Technology, 53(11), 2919-2955. <u>https://doi.org/10.1080/0020739X.2021.1922943</u>
- Lu, S. -., Lo, C. -., & Syu, J. -. (2022). Project-based learning oriented STEAM: The case of micro-bit papercutting lamp. *International Journal of Technology and Design Education, 32*(5), 2553-2575. <u>https://doi.org/10.1007/s10798-021-09714-1</u>
- Pearson, R. (2022). STEAM Education and the Whole Child: Examining Policy and Barriers. *International Journal of The Whole Child*, 7(02), 109-120.

9	Annex 5. Sun	nmary table of	the articles	selected for	the study of	the topic STEAM	in Education.
---	--------------	----------------	--------------	--------------	--------------	-----------------	---------------

Authors	Title	Journal	Country	Publis	Summarized	Methods Used	Results	Conclusions	Contributions
- Avner Caspi - Paul Gorsky - Rakefet Nitzani-Hendel - Bruria Shildhouse	STEM-oriented primary school children: participation in informal STEM programmes and career aspirations	International Journal of Science Education.	Israel	h date 2023	Abstract - Informal STEM programs for primary school children boost STEM career aspirations Demographic data of 3rd-6th graders in STEM programs analyzed. - Boys more involved than girls; younger students participate more.	- Chi square test for statistical differences, Cramer's V for effect size.	- More boys than girls participated; younger students were more involved. - Interest and enjoyment were key reasons for participation in STEM programs. - Informal STEM programs lead to early entry into STEM career pathways.	 Participation in STEM programs leads to early STEM career aspirations. Informal STEM studies enhance STEM knowledge and sustain student interest. 	 Participation in STEM programs at a young age influences career aspirations. Girls breaking gender stereotypes by aspiring to STEM careers early.
- Jiahong Su, Iris Heung, Yue Yim, Rupert Wegerif, Samuel Kai, Wah Chu	STEAM in early childhood education: a scoping review	Research in Science & Technological Education	Internationa I	2024	- Scoping review on STEAM in early childhood education Analyzed 26 articles, identified frameworks, learning activities, outcomes, and challenges.	 Mixed-research design, qualitative design, quantitative method were utilized. Data collection methods included surveys, tests, interviews, field notes, observations. Arksey and O'Malley's 	 Most studies used technologically enhanced learning and inquiry project- based learning. Mixed- research designs were commonly used to investigate STEAM education 	 STEAM in ECE improves skills and inspires positive contributions. Mixed-research designs are common for investigating STEAM effectiveness in ECE. Qualitative and quantitative 	- Characteristics of STEAM in early childhood education. - Learning activities, assessment methods, outcomes, and challenges in ECE settings. - Recommendation s for educators

						scoping review framework was followed.	effectiveness. - STEAM education positively impacts children's social and cognitive skills. - Future research should explore long- term effects of STEAM education.	methods are essential for understanding STEAM impact. - More research is needed to identify effective pedagogical approaches in STEAM.	and future research directions.
- José-Antonio Marín-Marín, Antonio-José Moreno- Guerrero, Pablo Dúo-Terrón, Jesús López- Belmonte	STEAM in education: a bibliometric analysis of performance and co-words	International Journal of Stem Education	Internationa	2021	- Analyzed STEAM education studies from 2006 to present. - Identified themes and trends in STEAM-EDU research Utilized WoS database for academic performance and co-word analysis.	- Bibliometric analysis, academic performance analysis, and co- word analysis Use of WoS programs like Analyze Results, Creation Citation Report, and SciMAT Data analysis with programs like Analyze Results, Creation Citation Report, and SciMAT. - Thorough procedure following considerations from other studies.	- STEAM studies began in 2006, with irregular scientific community interest. - Topics include gender differences, skills developed by students, and teacher training.	- STEAM studies lack a robust line of research over time. - Trends focus on gender differences, skills developed by students, and teacher training.	 STEAM studies focus on gender, race, student skills, and teacher training. Research areas include education, engineering, and computer science. Themes like science, computational thinking, and broadening participation are highlighted.

- María	Overview of	Eureka	Internationa	2021	- Overview of	- Qualitative	- Analysis of 105	- Educational	- Development of
González	educational	Journal on	I		educational	interpretative	documents from	robotics	competencies in
Fernández	robotics for	Science			robotics and	research	2005 to 2019.	enhances	communication,
- Yadira Flores	STEAM learning	Education			STEAM	- Document	- Benefits	communication,	teamwork,
González		and Outreach			learning.	analysis of 105	include	teamwork,	creativity, and
- Claudia Muñoz					- Analysis of	documents from	communication	creativity, and	problem-solving.
López					105 documents	2005 to 2019	skills, teamwork,	problem-solving	- Integration of
					from 2005 to	- Matrix	creativity, and	skills.	educational
					2019.	bibliographic and	problem-solving	- Robotics	robotics in
					- Emphasis on	content analysis	competencies.	education	science and
					primary and	proposed by	- Educational	benefits STEAM	environmental
					secondary	Gomez et al.	experiences	learning,	areas.
					educational		mainly in	interdisciplinary	- Emphasis on
					levels.		primary and	skills, and critical	constructivism
							secondary levels.	thinking.	and
								- More	constructionism
								systematic	in pedagogical
								studies needed	approaches.
								on computational	
								thinking and	
								STEAM	
								education.	
								- Implement	
								active teaching	
								methodologies	
								like gamification	
								and collaborative	
								work.	

- Wilson Krüger, Andrés Chiappe	- 21st-century skills and their relationship to STEAM learning environments.	Distance Education Network- Magazine	Internationa	2021	 Focus on 21st- century skills and STEAM learning environments relationship Review based on 153 scientific articles from Scopus and Scielo. Emphasizes formative assessment, collaborative environments, research-based learning in STEAM. 	- Systematic literature review based on 153 scientific articles. - Defined keywords applied in Scopus and Scielo databases.	- Consider formative assessment, collaborative environments, research-based learning, and gamification. - Identify relationships between 21st- century skills and STEAM learning environments.	- Emphasizes the importance of considering various factors in STEAM environments. - Highlights the need for formative assessment, collaboration, research-based learning in STEAM.	 Identifying 21st- century skills and their relationship to STEAM learning environments. Reviewing the consistency of conceptualization s about 21st- century skills. Emphasizing the importance of science, engineering, and technology components in STEAM. Associating ICT and digital literacy development with technology in STEAM.
- Daniel White, Seamus Delaney	- Full STEAM ahead, but who has the map for integration?	LUMAT	Internationa I	2021	 - PRISMA review on STEM/STEAM interdisciplinary learning in high schools. - Identified 99 articles, only 11 met selection criteria for synthesis Emphasized real-world project-based or problem- based learning 	 Identification of need for interdisciplinary learning evidence. Inclusion of exclusion criteria for research focus. Preliminary screening through examination of title, abstract, and keywords. 	 Only eleven studies met the selection criteria for the final synthesis. Improved outcomes were best achieved through real- world or problem-based learning. 	- STEM/STEAM enhances learning outcomes through project- based learning. - Further research is needed to provide more empirical evidence. - Implementation relies on project- based learning	 Emphasized real-world project-based learning for improved outcomes in high schools. Highlighted the importance of community and industry support in interdisciplinary learning Identified the need for further research to

$\dot{}$

					for improved outcomes.			and community collaboration.	support empirical evidence. - Advocated for integrated STEM education to enhance student learning outcomes. - Urged the development of evidence-based practices for interdisciplinary STEAM education.
- Andrea Ng - Sarika Kewalramani - Gillian Kidman	- Integrating and navigating STEAM (inSTEAM) in early childhood education.	Eurasia Journal of Mathematics , Science and Technology Education	Internationa I	2022	- Integrative review on STEAM integration in early childhood education Development of inSTEAM conceptual framework from 17 reviewed articles.	 Integrative review methodology to conceptualize integrating STEAM into ECE. Developed a precise search strategy for collecting data. Used Rayyan for screening titles and abstracts to exclude articles. 	 No clear definition of STEAM integration in early childhood education. Four levels of integration: disciplinary, multidisciplinary, interdisciplinary, and transdisciplinary, Ten articles defined STEAM integration, seven did not Provides a conceptual framework for integrating and navigating 	- Synthesizes existing STEAM understanding, quality, and literature gaps in ECE Provides certainty to integrating STEAM through the inSTEAM conceptual framework. - Reveals STEAM integration perceptions, current approaches, and challenges in ECE.	 Consolidation of STEM integration approaches in early childhood education. Development of a conceptual framework for integrating STEM in early childhood. Factors to consider when integrating STEM in early childhood classrooms.

							STEAM in ECE. - Synthesizes existing state of integrating STEAM, quality, gaps in literature.		
Nguyen Lan Phuong , Le Thi Thu Hien , Nguyen Quang Linh, Trinh Thi Phuong Thao, Hong-Hanh Thi Pham, Nguyen Truong Giang , Vu Thi Thuy	- Implementatio n of STEM education: A bibliometrics analysis from case study research	 Education Sciences is the only Q2 journal in Scopus. Top journals in STEM education are ranked Q1 in Scopus. 	Internationa I	2021	- Analyzed 750 publications on STEM education case studies from 2006- 2022. - Identified key research directions: higher education, STEAM, K12 education.	 Utilized bibliometric analysis for examining STEM education research trends. Data collection and analysis methodology established by Ha et al. 	- 750 publications analysed, including articles, conference papers, book chapters, and reviews First case study on STEM education dates back to 2006. - Rapid increase in the number of articles published in the last five years. - Annual growth rate recorded from 2006 to 2022 is 30.47%.	 STEM education research has grown significantly from 2006 to 2022. Main research directions include STEM in higher education and K12. Most influential articles provide background insights for readers. 	 Identified significant countries, authors, and publications impacting STEM education research. Highlighted three main research directions in STEM education.

- Morteza Zarei - Hossein Zeinalipour - Seyed Abdul Wahab Samawi	- Identify the components of the STEAM curriculum in elementary school.	International Journal of Pediatrics- Mashhad	Iran	2021	- STEAM curriculum model designed for elementary schools in Iran. - Qualitative thematic analysis used to identify curriculum components. - Integration of art essential for children's creativity and real-world connection.	- Qualitative thematic analysis method used for research. - Sampling done purposefully from various databases. - Content analysis and theme network system utilized for data analysis.	 Results include identifying components of STEAM curriculum based on Drake model. Results show organizing themes for teaching methodology and goals of STEAM. Study limitations due to lack of Persian sources and STEAM specialists. 	- Elements of the STEAM curriculum benefit from unique characteristics. - Final evaluation in STEAM should focus on understanding and problem- solving.	 Identifying components of STEAM curriculum for elementary schools in Iran. Emphasizing context-based approach in teaching methodology for holistic learning. Fostering creativity, interdisciplinary research, and project-based learning in students.
- Kachael Pearson	- Title: STEAM STEAM Education and the Whole Child: Examining Policy and Barriers	International Journal of the Whole Child	USA	2021	 Whole Child education nurtures students in critical skills for the future. STEAM programs align with Whole Child approach, fostering inquiry and skills. Research highlights barriers to implementing high-quality STEAM 	 Policy lens analysis to discuss barriers and suggestions for implementation. Exploration of Whole Child STEAM programs through a policy lens. Practical strategies provided for promoting high- quality STEAM education. 	 Discusses barriers to implementing high-quality Whole Child STEAM programs. Highlights the importance of STEAM education for student development. Emphasizes the need for further research on STEAM education Provides 	 Emphasizes the need for high-quality STEAM programs in schools. Discusses barriers and funding issues hindering the implementation of STEAM programs. Advocates for flexible, interdisciplinary curriculum to nurture student creativity. 	 Emphasizes high-quality STEAM programs for diverse student needs. Discusses barriers and funding issues in implementing Whole Child STEAM programs. Advocates for policy changes to enhance curriculum flexibility and interdisciplinary learning.

programs in schools.

strategies for promoting highquality STEAM education in schools.

- Mariela	- Creative	Education	Internationa	2024	- Identifies	- Hands-on	- Emphasizes	- Emphasizes	- Specific
Samaniego,	Thinking in Art	Sciences	I		characteristics	learning, project-	experiential	experiential	methods,
Nancy Usca,	and Design				of creative	based learning,	learning, STEAM,	learning, STEAM,	techniques, and
José Salguero,	Education: A				thinking in arts	STEAM learning,	and	and	tools for fostering
William	Systematic				and design	challenge-based	interdisciplinary	interdisciplinary	creative thinking
Quevedo	Review				education.	learning.	approaches for	approaches for	in students.
					- Emphasizes	- Interdisciplinary	creative thinking	creative thinking.	- Enhancing
					experiential	and collaborative	- Techniques	 Urges research 	educational
					learning,	approaches	include	promotion in	processes by
					STEAM, and	prioritising	interdisciplinary	specific regions	providing
					interdisciplinary	practical	projects, artistic	like Latin	practical and
					approaches for	experience in	practices,	America.	applicable
					creativity.	learning.	nature-based	- Highlights the	resources for
					- Highlights	- Techniques	activities, and	importance of	educators.
					core skills like	include nature-	digital tools	fostering	
					originality,	based activities,	- Core skills	creativity from an	
					fluency,	artistic practices,	identified:	early age.	
					flexibility, and	and digital tools.	originality,		
					elaboration.		fluency,		
					- Urges		flexibility, and		
					research		elaboration		
					promotion in		- Urgency to		
					specific regions		promote		
					like Latin		research in		
					America.		specific regions		
					fostoring		Amorica		
					creativity from		America		
					an early age for				
					offective				
					education				
					euucation.				

- David Aguilera - Jairo Ortiz- Revilla	- STEM vs. STEAM Education and Student Creativity: A Systematic Literature Review	Education Sciences	Internationa I	2021	- STEM and STEAM education impact student creativity positively. - Review of 14 educational interventions from 2010- 2020. - No clear definitions of STEM and STEAM in some studies.	- Systematic literature review based on defined criteria and PRISMA Declaration. - Search conducted on Web of Science and Scopus databases for data.	- STEM and STEAM education lack clear definitions in studies. - Positive effects on student creativity were observed in both approaches.	- STEAM education doesn't surpass STEM in promoting student creativity. - Lack of clear definitions in STEM and STEAM approaches.	 Review of STEM and STEAM interventions on student creativity. Evaluation of creativity through process, environment, and person. Data extraction on STEM and STEAM education impact on creativity. Systematic literature review on STEM and STEAM interventions.
- Jefferson Rodrigues-Silva - Thaís Coutinho - Ángel Alsina	Conceptualisin g and framing STEAM education: what is (and what is not) this educational approach?	Journal "Linguagem e Tecnologia."	Internationa I	2023	- STEAM is an interdisciplinary educational approach involving science, technology, and more. - The paper clarifies misconceptions about STEAM and proposes a framework It differentiates STEAM disciplines, activities, and education in detail	- Narrative review of articles indexed in Web of Science. - Snowball process to analyse references of selected documents.	 Defined STEAM as not an evolution of STEM or a methodology. Proposed a framework emphasizing interdisciplinarit y and the five knowledge areas. 	 STEAM is not an evolution of STEM, teaching methodology, or transdisciplinarity Defined STEAM disciplines, activities, and education approach clearly. Emphasized interdisciplinarity and the five knowledge areas in STEAM framework. 	 Clarifies STEAM as distinct from STEM, teaching methodology, or interdisciplinarity. Proposes a framework for STEAM emphasizing interdisciplinarity and five knowledge areas.

Aisling Leavy,	The prevalence	Journal of	Internationa	2022	- STEAM	- Mixed-methods	- Fast-growing	- Fast-growing	- Identifies the
Lara Dick, Maria	and use of	computer	I		Education	approaches for	use of emerging	use of emerging	prevalence of
Meletiou-	emerging	assisted			literature	richer insights and	technologies in	technologies in	emerging
Mavrotheris,	technologies in	learning			review on	broader	STEAM	STEAM education	technologies in
Efi	STEAM				emerging	conclusions.	education	worldwide.	STEAM education.
Paparistodemo	education: A				technologies for	- Questionnaire,	worldwide.	- Emphasis on	- Highlights the
u	systematic				innovative	survey, interview,	- Emphasis on	developing	need for carefully
	review of the				teaching	focus group,	developing	STEAM-related	designed
	literature				approaches	observation, field	STEAM-related	disciplinary	intervention
					Focus on	notes.	disciplinary	knowledge and	studies in STEAM.
					developing		knowledge and	21st-century	
					21st-century		21st-century	skills.	
					skills with a lack		skills.	- Need for	
					of emphasis on		- Lack of	carefully	
					arts		targeted	designed	
					- Need for		emphasis on	intervention	
					intervention		developing	studies involving	
					studies with		understandings	multidisciplinary	
					multidisciplinar		in the arts.	collaboration.	
					y collaboration				
					for learning				
					outcomes.				

Miguel Á.	Fostering	Comp Applic	Internationa	2020	- Focus on	- PrBL is the most	- Robotics and	 Robotics and 	- Discusses the
Conde 1	STEAM through	In	I		integrating	popular	physical devices	mechatronics	successful
Francisco J.	challenge-	Engineering			robotics and	methodology in	successfully	engage students	application of
Rodríguez-	based learning,				mechatronics in	the paper.	applied in	in STEAM	robotics and
Sedano1	robotics, and				STEAM	- Systematic	STEAM	disciplines	mechatronics in
Camino	physical				Education.	mapping review	Education	successfully.	STEAM Education.
Fernández-	devices: A				- Highlights the	methodology is	Benefits of	- STEAM	- Classifies
Llamas 1 José	systematic				success of	employed for	active	Education	studies based on
Gonçalves 2	mapping				robotics and	analysis.	methodologies	benefits from	goals and benefits
José Lima2	literature				physical devices		in STEAM	active	of PDR and
Francisco J.	review				in education.		Education	methodologies	STEAM Education.
García-Peñalvo					- Emphasizes		approaches	like project-based	
					the importance		analysed.	learning.	
					of active				
					methodologies				
					in engaging				
					students.				

- Shashidhar	- At the dawn	International	Internationa	2021	- Examined	- Document	- Identified	- Conclusions	- Analysis of
Belbase, Raj	of science,	Journal of	I		integrated	analysis with	prospects,	include	prospects,
Bhesh, Wandee	technology,	Mathematica			STEAM	review of	priorities,	prospects,	priorities,
Mainali, Hassan	engineering,	l Education in			education	literature, reports,	processes, and	priorities,	processes, and
Kasemsukpipat,	arts, and	Science and			through	and websites.	problems of	processes, and	problems in
Munkhjargal	mathematics.	Technology			literature	- Thorough	STEAM	problems of	STEAM education.
Tairab, Adeeb					review and	document	education.	STEAM	 Integration of
Gochoo, Jarrah,					document	collection from	- Emphasized	education.	arts into STEM
Ra Mainali,					analysis.	various sources	curriculum		disciplines to
Wandee					- Identified	like journals and	integration,		enhance learning.
Kasemsukpipa,					prospects,	books.	pedagogical		- Emphasis on
Hassan Tairab					priorities,	- Gathering	processes, and		project-based
					processes, and	information from	assessment in		learning and
					problems in	websites, books,	STEAM		problem-solving
					STEAM	journal articles,	education.		in STEAM
					education.	and conference	- Explored the		education.
					- Explored	proceedings.	implications of		
					STEAM		STEAM		
					initiatives in		education on		
					South Korea,		teacher		
					US, China, and		development		
					Singapore		and training.		
					Analyzed		- Discussed		
					themes like		assessment		
					movement,		practices in		
					curriculum		STEAM		
					integration,		education,		
					pedagogy, and		including		
					challenges.		project-based		
							learning.		

- Francisco	- Emerging	Bord'on,	Internationa	2022	- Analyzed	- Bibliometric	- Growth in	- Rapid growth in	- Analysis of
Silva-Díaz	technologies in	journal of	I		STEM education	analysis based on	STEM education	STEM education	STEM education
- Gracia	STEM	pedagogy			technologies	Scopus and Web	publications	from 2017.	publications from
Fernández-	education: A				from 2010 to	of Science data	since 2017.	- Dominance of	2010-2020.
Ferrer	bibliometric				2020.	Used Zupic and	- Dominance of	male authors	- Focus on
- Mercedes	analysis.				- Used Scopus	Cater's flow for	virtual reality	with a slight	emerging
Vásquez-Vilchez					and Web of	bibliometric	over robotics in	increase in	technologies like
- Cristian					Science for	studies.	central study	female	virtual reality and
Ferrada					bibliometric		areas.	representation.	educational
- Romina					analysis.		- High impact	- USA leads in	robotics.
Narváez					- Identified		journals focus on	production, with	- Noteworthy
- Javier Carrillo-					growth in		educational	rising	increase in
Rosúa					scientific		technology and	contributions	scientific
					production		STEM.	from Taiwan,	production post-
					post-2017.		- Limitations	Turkey, Malaysia.	2017.
							include narrow		- Emphasis on
							sample scope,		female
							suggesting need		participation
							for broader		trends in STEM
							studies.		research.
									- Distribution of
									documents by
									technology used,
									highlighting
									virtual reality.

Binar Kurnia Prahani ,	ANALYSE OF STEAM	Journal of Technology	Internationa I	2023	- Analyzed STEAM	- VOSViewer, Microsoft Excel,	 Document types: articles 	 Provides insights for 	- Analysis of STEAM education	
Khoirun Nisa ,	EDUCATION	and Science			education	and word cloud	rank first	scholars	research trends	
Manarani Ayu	RESEARCH FOR	Education			research over	generator for	globally,	Interested in	over three	
Nurdiana , Erina					three decades	anaiysis	conference	STEAIVI and	decades.	
Krisnaningsin , Mobel Zoidi Bin	DECADES				globally and in	- Descriptive	Fact Acia	Encourages	- Top cited papers	
					South-East Asia.	diagram and	East Asia	- Encourages	from Journal of	
Aminuuum, Imam Sva'roni					- Llood	word cloud	sources: 'lournal	on STEAM	Management' and	
iniani Sya tom					VOSViewer	visualization	of Small	education trends	'Education	
					Excel, and word	VISUAIIZACIÓN	Business	in specific	Sciences', -	
					cloud generator		Management'	regions.	Visualization	
					for analysis.		globally,	U	analysis of global	
					- Identified top		'Education		and South East	
					cited papers,		Sciences' in		Asia research	
					authors, and		South East Asia.		clusters.	
					countries in		- Most citations		- Document type	
					STEAM		by author: Jeon		analysis: articles,	
					research.		M from the		conference	
					- Highlighted		U.S.A.		papers, editorials,	
					keywords and		- Global region		and reviews.	
					trends in		clusters: 4		- Top countries	
					STEAM		clusters with 62		interested in	
					education.		keywords; South		STEAM research:	
							Asia has 2		US, Thailand,	
							clusters.		South Korea.	
							- STEAIVI			
							Focus on			
							nrogram			
							program,			
							environment			
							model, and			
							implication.			

Olalla García-	The STEAM	Complutense	Internationa	2023	- STEAM	- Quantitative	- 83.3% of	- Majority of	- STEAM
Fuentes;	educational	Journal of	1		education	research methods	investigations	STEAM studies	enhances
Manuela	approach: a	Education			integrates	were	are quantitative,	are empirical,	creativity,
Raposo-Rivas;	literature				science,	predominantly	12.5%	from the US and	motivation, and
María-Esther	review				technology,	used in the paper.	qualitative, and	Korea.	self-efficacy in
Martínez-					engineering,	- Qualitative and	4.1% mixed.	- STEAM	students.
Figueira					arts, and	mixed methods	- Main objective	research is	- STEAM justifies
					mathematics.	were also	is the	prominent in the	the importance of
					- Review of	employed in some	development,	academic field.	integrating arts
					literature on	studies.	application, and		into STEM
					STEAM	- The research	evaluation of		education.
					approach from	focused on the	STEAM		
					2008 to 2019.	development,	proposals.		
					- Majority of	application, and	- Most recurrent		
					studies focus on	evaluation of	theme is the		
					creativity,	STEAM proposals.	combination of		
					motivation, and	- Analysis of	art with science,		
					self-efficacy.	combining art	technology, or		
					- Challenges in	with science,	math.		
					implementing	technology, or			
					STEAM projects	mathematics was			
					include	common.			
					economic and				
					curricular				
					limitations.				

Razi, A. & Zhou,	STEM, ISTEM,	Journal of	Internationa	2023	- Calls for	- Curriculum	- Calls for	- Emphasizes	- Need for
G.	and STEAM: What is next? International	Technology in Education (IJTE)	1		curriculum reform in STEM, iSTEM, and STEAM domains. - Emphasizes professional development for teachers and student interest in STEM. - Highlights the need for further research and consensus in STEM fields.	reform involving STEM, iSTEM, STEAM domains and pedagogical practices. - Need for professional development for teachers and support for post- secondary institutions.	curriculum reform, professional development, and consensus among scholars.	need for curriculum reform, professional development, and research. - Highlights importance of administrative support, pedagogical approaches, and teacher training. - Addresses uncertainty and historical background of STEM, iSTEM, and STEAM.	curriculum reform with STEM, iSTEM, STEAM domains. - Importance of administrative support for successful STEM implementation. - Transition from STEM to ISTEM to STEAM and future considerations.

Chia-Yu Liu,	STEM without	Thinking	china	2021	- Explored art	- Thematic	- Defined art	- Clarified and	- Strategies for
Chao-Jung Wu	art: A ship	Skills and			elements in	analysis was	elements in	redefined three	incorporating art
	without a sail	Creativity			STEAM	conducted on	STEAM:	art elements in	elements in
					education	semi-structured	arts/aesthetic,	STEAM	STEAM activities.
					through	interviews with	contextual	education.	- Enhancing
					interviews with	STEAM experts.	understanding,	- Established	learners'
					experts.	-	creativity.	factors affecting	emotional
					- Identified	Phenomenologica	- Extracted 10	art elements and	experiences and
					strategies for	l qualitative	factors affecting	suggestions for	interest in STEM
					incorporating	method was used	art elements and	enhancing them.	content.
					art elements in	to explore first-	10 suggestions	- Emphasized the	
					STEAM	person	for	importance of art	
					activities	perspectives.	enhancement.	elements in	
					Emphasized the	- Data was	- Thematic	activating STEM	
					importance of	transcribed	analysis revealed	discussions.	
					artsaesthetic,	verbatim and	themes and sub-		
					contextual	thematic analysis	themes from		
					understanding,	was employed.	expert		
					and creativity in		interviews.		
					STEAM.				

Elaine Perignat,	STEAM in	Thinking	2018	- Integrative	-	- Review	- Lack of	- Clarification of
Jen Katz-	practice and	Skills and		review on	Transdisciplinary,	included 18	measured	STEAM education
Buonincontro	research: An	Creativity		STEAM	interdisciplinary,	empirical, 14	learning	purpose,
	integrative			education	multi-disciplinary,	descriptive, and	outcomes in	definitions, and
	literature			definitions,	cross-disciplinary,	12 pedagogical	creativity,	learning
	review			purposes, and	and arts-	framework	problem-solving,	outcomes.
				learning	integration	articles.	and arts	- Discordance
				outcomes.	methods used	- Sixteen articles	education.	between STEAM
				- Lack of	Descriptive,	focused on	- Struggle with	concept and
				consensus on	empirical, and	primary	methods for	practice, lack of
				STEAM	pedagogical	education, one	integrating arts in	creativity
				definitions and	framework	on high school.	STEAM	outcomes.
				arts education	articles were	- Authors were a	disciplines.	
				outcomes.	analyzed.	mix of Art and		
				- Examined 44		STEM Educators,		
				articles from		scholars,		
				2007 to 2018 to		researchers.		
				advance STEAM				
				research.				

Lyn D. English	Advancing	International	EU	2017	- Complex	- The paper	- Addresses	- Addressed core	- Contributions
, ,	elementary and	Journal of			STEM education	addresses STEM	perspectives on	issues in STEM	include
	, middle school	Science and			debates,	education	STEM education,	education and	perspectives on
	STEM	Mathematics			implementation	perspectives,	integration,	integration.	STEM, approaches
	education.	Education			challenges, and	integration,	discipline	- Highlighted the	to integration,
					equity issues	discipline	representation,	importance of	equity in access.
					addressed.	representation.	equity, and	equity in access	- Emphasizes the
					- Focus on	-	STEAM.	to STEM	importance of
					STEM	Recommendation	- Discusses	education.	engineering
					integration,	s for designing	pedagogical	- Emphasized the	education in
					discipline	STEM-based	affordances in	need for	STEM for
					representation,	learning	integrated STEM	integrated STEM	students
					equity, and	experiences are	activities	experiences for	Recommendation
					extending to	provided.	Highlights	effective learning.	s for designing
					STEAM.		strategies for		STEM-based
							reducing		learning
							disparities in		

provided.

experiences are

STEM

achievement.

Fuentes, Manuela Raposo-Rivas and María-Esther Martínez- Figueira	EARLY CHILDHOOD EDUCATION: CONTENT ANALYSIS OF THE OFFICIAL CURRICULUM	Journal of curriculum and lecturer training.	Shaiii	2022	combines document analysis to classify curriculum objectives for STEAM Analyzes semantic relationships to identify key thematic areas. - Legislation shows significant alignment with STEAM disciplines. - Methodology includes coding and categorization for legislative text analysis.	combining document analysis and content classification. - Analysis of objectives, contents, and relationships within disciplines. - Documental and content analysis of official curriculum documents in Galicia.	 43% of general stage objectives and 61% of area objectives relate to STEAM. 71.2% of state- level contents are linked to STEAM disciplines. 56% of general objectives in Early Childhood Education are STEAM-related. The study found a reorganization of contents into 26 new thematic areas. 	shows increased presence of STEAM-related objectives and contents. - Lack of specific STEAM-related content in both state and autonomous legislation.	curriculum content for STEAM in Early Childhood Education. - Emphasis on STEAM initiatives and projects in educational systems. - Integration of art, music, and robotics in early childhood education.

10 Annex 5. Summary table of the articles selected for the study of the topic STEAM in Education.

AUTHORS	ARTICLE TITLE	JOURNAL	Country	PUBLISH DATE	SUMMARIZED ABSTRACT	METHODS USED	RESULTS	CONCLUSIONS	CONTRIBUTIONS
- Kaan Bati, Ikbal Yetişir, Ilke Çalişkan, Gökhan Güneş, Esma Gül, Debra Chapman	- Teaching the concept of time: A steam-based program on computational thinking.	Cogent Education.	Turkey	2018	 The paper explores teaching time concept through computational thinking in education. Activities include understanding cycles, relationships, and complexity within a system. Data collection and analysis involved 104 students in experimental and control groups. 	- Concurrent- triangulation design with qualitative and quantitative methods Quasi- experimental method with pre- test and posttest control group.	 Data analysis codes from students' diaries revealed 'enjoyable' experiences. Pretest and posttest scores were analysed using covariance analysis. 	- Emphasized the importance of teaching time concept in science education Analyzed data sets to ensure distribution met variance analysis assumptions.	 Developed a program on computational thinking in science education. Designed a Time Teaching Program focusing on STEM and computational thinking.

- Tzu-Hua Wang	- An Assessment of	Sustainability	Taiwan	2022	- Explored STEAM	- Project-based	- PBL with CAIM	- PBL with CAIM	- PBL with CAIM
- Jari Lavonen	Junior High School				knowledge,	learning (PBL)	enhanced STEAM	enhanced STEAM	enhanced STEAM
- Hsien-Sheng	Students'				creativity, and	with cognitive-	knowledge,	knowledge,	knowledge,
Hsiao	Knowledge,				performance in	affective	creativity, and	creativity, and	creativity, and
- Jyun-Chen	Creativity, and				junior high school	interaction model	hands-on	hands-on	hands-on
Chen	Hands-On				students.	(CAIM)	performance.	performance.	performance.
- Jhen-Han Chen	Performance				- Implemented PBL	- STEAM	- EGs	- Students in EGs	- Positive effect on
-					with CAIM to	Knowledge	outperformed CGs	showed higher	creativity,
Yu-Ting Zeng					enhance learning	Examination	in creativity,	creativity and	innovativeness, and
- Guang-Han					outcomes and	Paper (STEAM	novelty, and	innovativeness in	creative abilities for
Chung					creativity.	KEP) for	overall	product design.	students.
					- Showed positive	assessment	performance.	- EGs outperformed	- Provided
					effects on		- Students in EGs	CGs in hands-on	reference examples
					creativity and		showed better	performance and	for future
					academic		performance in	product quality.	development of
					performance in		valuable, useful,	 Creative abilities 	STEAM activities.
					students.		and elegant	were crucial for	
					- Contributed to		aspects.	students'	
					achieving		 EGs added 	performance and	
					Sustainable		components to	product outcomes.	
					Development Goal		improve boat		
					4 in education.		function and		
							design creativity.		
							- EGs		
							demonstrated		
							higher academic		
							performance in		
							STEAM		
							knowledge.		

- Kerry Chappell, Lindsay Hetherington	Creative pedagogies in digital STEAM practices: natural, technological and cultural entanglements for powerful learning and activism	Cultural Studies of Science Education	Denmark, Spain, England	2023	- Explores creative pedagogies in digital STEAM practices in school settings. - Utilizes ocean learning to enhance creative teaching and teaching for creativity Analyzes messy mixtures of natural, cultural, and technological environments in education.	 Postqualitative analytical approach with diffractive inquiry was used. Diffractive switches and material-dialogic assemblages were developed for analysis. Data collection involved interviewing, capturing photographs, and questionnaires. 	 Explored messy mixtures of natural, cultural, and technological environments. Developed four material-dialogic assemblages using diffractive analytic technique. Offered insight into creative pedagogies supporting digital STEAM practices. 	 Explored creative pedagogies in digital STEAM practices across school settings Applied postqualitative analytical approach to understand messy mixtures of environments. Acknowledged project partners and contributors from Ocean Connections EU-funded Erasmus project. 	 Research contributes to ocean literacy through creative pedagogies and digital technologies. Analyzed data using diffractive analytic technique inspired by new materialist theory. Explored messy mixtures of natural, cultural, and technological environments in learning.
- Xiaodong Huang - Chengche Qiao	Enhancing Computational Thinking Skills Through Artificial Intelligence Education at a STEAM High School	Science & Education	Beijing	2024	 Integrates AI education with STEAM model to enhance computational thinking skills. Study evaluates effects on students' computational thinking skills, learning motivation. AI education in STEAM model can guide multi- disciplinary knowledge combination. 	- ANCOVA approach with pretest scores as covariates for analysis. - Statistical analysis of differences in CT skills, motivation, and self-efficacy.	- Experimental group showed higher self-efficacy and learning motivation scores. - Integration of Al education with STEAM model enhanced students' skills.	 Al education with STEAM enhances computational thinking skills and self-efficacy. STEAM model promotes learning motivation and critical thinking in students. The integration of Al education with STEAM is beneficial for students. 	 Integrating AI education with STEAM model to enhance computational thinking skills. Demonstrating the positive impact on learning motivation and self- efficacy.

- Cassie Quigley - Dani Herro - Elizabeth King - Holly Plank	- STEAM Designed and Enacted: Understanding the Process of Design and Implementation	Journal of Science Education and Technology	USA	2020	- Focus on STEAM curriculum design and implementation in elementary schools.	 Problem-based units for STEAM curriculum design and implementation. Student inquiry promotion through teacher facilitation. Technology integration with e- books and videos. Discipline integration with math, science, and engineering references. Student choice in assessment, study method, and partners. 	- Teachers designing relevant problems aligned with STEAM model. - Teacher facilitation promoted inquiry and authentic tasks, challenging for teachers. - Mismatch between designed and enacted curriculum, highlighting need for support. - Clear need for grade-specific implementation model to support	 Teachers designing relevant problems align with STEAM model. Teacher facilitation promotes inquiry and authentic tasks, challenging for teachers. Integration of technology and disciplines offers authentic assessments and student choice. 	 Connected learning theory guides STEAM instruction in problem-solving scenarios. Technology options like video production and game design engage students.
- Shih-Yun Lu - Chih-Cheng Lo - Jia-Yu Syu	- Project-based learning oriented STEAM: the case of micro-bit paper- cutting lamp.	International Journal of Technology and Design Education	Taiwan	2022	- Focus on STEAM curriculum for elementary students integrating art. - Utilizes PBL with Chinese Paper- cutting and BBC micro:bit. - Positive impact on students' creative recognition and development. - Short-term course, suggests extending for long- term influence evaluation.	 Project-Based Learning (PBL) with Chinese Paper-cutting and BBC micro:bit. Creative thinking instruction strategy employed in teaching process. Program design teaching using Blocky for mathematical concept understanding. 	 Project-based learning incorporating STEAM positively influences students' creative recognition. Short-term STEAM course benefits cognitive facet of creativity, not emotional. Paper-cutting art project enhances divergent thinking and problem- solving skills. 	- PBL-oriented STEAM curriculum positively influences students' creative recognition. - Short teaching period limits emotional facet of creativity in students.	- Conceptualization, methodology, data curation, writing, review, editing, supervision.

- Ileana Greca - Jairo Ortiz- Revilla - Irene Arriassecq	- Design and assessment of a STEAM teaching- learning sequence for Primary School Education	Eureka Journal on Science Education and Outreach	Spain	2021	- Design and evaluation of STEAM teaching sequence for Primary Education. - Results show viability for scientific and integral development of students.	 Mixed methods research with qualitative observation and quantitative data analysis. Iterative prototyping approach with three prototypes implemented in six groups. Qualitative data collection through participant observation and student materials. 	- The theoretical model used in the SEA design is viable. - High competency levels achieved in all competencies Evidence supports the relevance of iSTEAM for primary education improvement.	- The theoretical model for SEA design in i-STEAM is viable. - iSTEAM enhances competencies in primary education when implemented coherently. - The study provides general design principles for educators.	 Design and evaluation of a STEAM teaching- learning sequence for primary education. Model used in the design is viable for scientific and integral development.
Hye Ran Kwack and Eu Jean Jang	Development and application of a STEAM program using classroom wall gardens	J. People Plants Environ	South Korea	2021	 Developed STEAM program using classroom wall gardens to promote divergent thinking. Program led to high student satisfaction, understanding, and interest in science. Surveyed students to analyze satisfaction and understanding levels post- program. 	- Four types of classroom wall gardens were used in the program Materials and characteristics of each wall garden were analyzed. - Statistical program SPSS 25.0 was used for questionnaire analysis.	 High student satisfaction and understanding in STEAM program with wall gardens. No significant difference in satisfaction by gender. Grades 4, 5, and 6 students had better understanding than Grade 3. 	 High student satisfaction and understanding in STEAM program with wall gardens. Increased interest in science and connection with other subject areas. Contribution to the development of STEAM education programs in agriculture. 	 High student satisfaction and understanding in STEAM education program. Increased interest in science and connection with other subject areas. Contribution to the development of STEAM education programs in agriculture.

- Valeria Cabello - M Loreto Martínez - Solange Armijo - Lesly Maldonado	Promoting STEAM learning in the early years: "Little Scientists" Program	LUMAT: International Journal on Math, Science and Technology Education	Spain	- The research paper does not mention the specific publication date.	Early education program in Chile promotes integrated STEAM learning. Program strengths, weaknesses, and opportunities identified for future replication. Integration of science with other disciplines crucial for student engagement. Ethical procedures followed for data collection and participant anonymity.	 Authentic disciplinary learning methodologies with exploratory activities and expressive actions. Gender- empowering approach in teacher selection and course design. Ethical procedures followed for data collection, processing, and protection. 	 Students positively engaged in learning processes through diverse artistic formats. Integration of science with other disciplines in enriched experiences. Participants showed commitment to hands-on learning and construction of models. 	 Strengths include engaging students in diverse artistic formats Weaknesses involve teacher management of student behaviour and infrastructure challenges. Opportunities focus on improving program articulation and inclusion of all children. 	 Strengths, weaknesses, and opportunities in STEAM education for young children. Program design, implementation issues, and gender- empowering approach in Chile. Ethical procedures followed for data collection, processing, and protection.
- Chu-Yang Chang - Zhengyi Du - Hsu-Chan Kuo - Chih-Ching Chang	Investigating the Impact of Design Thinking-Based STEAM PBL on Students' Creativity and Computational Thinking	IEEE TRANSACTIONS ON EDUCATION	China	2023	- STEAM PBL enhances creativity and computational thinking skills in students. - Tri-phase DT-PBL framework integrates creative thinking, PBL, and DT effectively. - Results show significant improvements in creativity dimensions and CT skills. - Study explores the potential of integrating STEAM into PBL for students.	- Quasi- experimental research design with pretest and post-test unequal groups Utilized the New Chinese Version of the Torrance test and Beberas Challenge.	 Experimental group showed significant improvements in creativity and computational thinking skills. Experimental group outperformed the comparison group significantly in creativity and CT. Tri-phase DT-PBL approach enhanced students' creativity significantly compared to the comparison group. 	- DT-PBL enhances creativity and computational thinking in seventh graders. - STEAM transdisciplinary learning effectively incorporates cross- disciplinary knowledge for students.	- Develops STEAM integrated PBL for creativity and computational thinking skills.

- Gulbin Ozkan - Unsal Topsakal	Investigating the effectiveness of STEAM education on students' conceptual understanding of force and energy topics	Research in Science & Technological Education	Turkish	2020	 Investigates STEAM education impact on 7th- grade students' science understanding. STEAM approach enhances conceptual understanding and reduces misconceptions. Study group showed significantly higher post-trial scores than control group. 	 Experimental embedded mixed methods design with quantitative and qualitative data. Control group to compare STEAM approach with regular science curriculum. Data collected through Force and Energy Conceptual Test and interviews. 	- STEAM education positively impacted students' conceptual understanding and reduced misconceptions. - Post-trial scores of the study group were significantly higher.	- STEAM education positively impacts students' conceptual understanding and reduces misconceptions. - Post-trial scores of STEAM group were significantly higher than control group. - Learner-centered environment in STEAM fosters students' conceptual understanding.	 Investigated STEAM education's effect on students' conceptual understanding of science. Demonstrated positive impact of STEAM education on reducing misconceptions. Showed higher post-trial scores in STEAM group compared to control Emphasized learner-centered environment support by STEAM education.
- Kyungeun Lim	Expanding Multimodal Artistic Expression and Appreciation Methods through Integrating Augmented Reality	ljade	USA	2022	 Explores AR integration in art education, enhancing students' art expression. Utilized Adobe Aero and Merge Cube for AR-based curriculum in classes. Positive impacts on students' learning engagement, satisfaction, and spatial understanding. 	 Integrated AR creation tool (Adobe Aero) and AR education tool (Merge Cube) Designed lessons with multimodal delivery methods for learning effectiveness with AR Explored 2D and 3D hybrid art creations in AR Implemented digital storytelling with AR for students' learning engagement 	 Expanded art expression Expression Expression Positive impact on students' learning engagement, satisfaction, and spatial understanding. AR allowed exploration of physical spaces and storytelling within them. 	- AR-based curriculum expanded students' art expression in real and virtual spaces. - Positive impacts on students' learning engagement, satisfaction, and spatial understanding. - Students connected AR with education and art, enhancing visual analysis.	 Explored AR- integrated curriculum impact on students' art expression. Positive impacts on learning engagement, satisfaction, and understanding of spatial structures. AR allowed exploration of physical spaces and storytelling within them. AR provided multiple perspectives and angles for art creation and appreciation.

- Alvaro Jordan - Aaron Knochel - Nicholas Meisel - Kelsey Reiger - Swapnil Sinha	Making on the Move: Mobility, Makerspaces, and Art Education	iJADE	USA	2021	 Review of Mobile Atelier for Kinaesthetic Education combining maker movement. Emphasizes curricular spectacle, mobile makerspace, and strategies for novice users. Explores thematic connections between maker movement, art education, and STEAM. Encourages informal art education practices for kinaesthetic learning. 	 Development of Mobile Atelier for Kinaesthetic Education with Material to Form curriculum. Hosting scheduled and walk-in sessions for MAKE 3D platform. 	 Development of Mobile Atelier for Kinaesthetic Education integrating art and maker education. Mobile makerspace platform MAKE 3D facilitates hands- on activities for learners. Curricular spectacle created through additive techniques in digital fabrication. 	 Emphasizes kinaesthetic learning, design thinking, and place- based education in art. Encourages informal art education practices through mobile makerspaces. Explores the development of a mobile makerspace platform for art education. 	 Development of Mobile Atelier for Kinaesthetic Education integrating art and maker education. Emphasis on interdisciplinary learning, STEAM initiatives, and digital fabrication techniques.
- Robert Danielson, Elizabeth Grace, Alison White, Molly Kelton, Jeb Owen, Kristin Fisher, Anamaria Diaz Martinez, Maria Mozo	Facilitating Systems Thinking Through Arts- Based STEM Integration	Frontiers	USA	2022	- Arts integrated STEM program enhances systems thinking in rural communities. - Students showed improved understanding of ecosystem dynamics and zoonotic diseases.	 Mixed methods analysis for image and career selection tasks. Data collection through written assessments and student descriptions. 	 Arts integration enhanced systems thinking and career understanding in students. Students showed improved connections between concepts and ecosystem dynamics. Some students made broader career connections, indicating room for growth. 	 Arts integration enhances systems thinking in STEM education. Students improved understanding of zoonotic diseases and ecosystem dynamics. Educators can merge arts and sciences to promote interconnectedness in STEM. 	 Integrating arts into STEM curriculum to enhance systems thinking. Using arts to promote understanding of zoonotic diseases and ecosystem dynamics. Exploring how arts integration supports systems thinking on socio- scientific issues.

- Suryanti,	STEAM-Project-	European	Jakarta	2023	- STEAM-PjBL	- Quasi-	- STEAM-PjBL	- STEAM-PjBL	- STEAM-PjBL
Mochamad	Based Learning: A	Journal of			model enhances	experimental	significantly	significantly	model significantly
Nursalim, Nadia	Catalyst for	Educational			scientific literacy in	methodology with	improved	enhances scientific	improved students'
Choirunnisa, Ivo	Elementary School	Research			elementary	22 female and 26	students' scientific	literacy skills in	scientific literacy
Yuliana	Students' Scientific				students	male fourth-grade	literacy skills over	elementary	skills.
	Literacy Skills				significantly.	students	traditional	students	- Experimental
					- Experimental	STEAM-PjBL	instruction.	Experimental group	group
					group	model for	- Experimental	outperformed the	outperformed the
					outperformed	experimental	group	control group,	control group in
					control group in	group,	outperformed the	validating STEAM-	post-test
					post-test scientific	conventional	control group in	PjBL effectiveness.	assessments.
					literacy	learning for	post-test scientific	 Students engaged 	- Activities included
					Study recommends	control group.	literacy	in real-world	real-world issues,
					adopting STEAM-	- Administered	Activities in	problem-solving	project design, data
					PjBL model for	Scientific Literacy	STEAM-PjBL model	activities, improving	analysis, and
					teaching	Test (SLT)	enhanced	scientific literacy	conclusions.
					fundamental	followed by	scientific literacy	Valid and reliable	
					scientific concepts.	unpaired and	through real-world	data analysis	
						paired t-tests.	issues.	supports the impact	
						 Data analysis 	- Students in	of STEAM-PjBL.	
						included	experimental		
						Cronbach alpha,	group engaged in		
						Shapiro-Wilk,	problem-solving		
						Levene's tests,	with alternative		
						and T-tests.	energy sources.		
							- Data analysis		
							confirmed the		
							validity and		
							reliability of the		
							study.		

- Chung, S. K., & Li, D	Issues-Based STEAM Education: A Case Study in a Hong Kong Secondary School	International Journal of Education & the Arts	USA	2021	 Integrates art education into STEM for authentic, interdisciplinary learning experience. Discusses movement from STEM to STEAM, emphasizing inquiry-based learning. 	 Integration of issues-based art education into STEM curriculum. Encouraging art teachers to teach social justice issues. 	 Integrating art into STEM enhances real- world learning and critical thinking. Students learned math, engineering, and art through issues-based STEAM education. Students used recycled materials to create moving sculptures addressing social issues. 	 Integration of art into STEM enhances authentic, interdisciplinary learning experiences. Issues-based STEAM education promotes social justice awareness and critical thinking. Gender bias affects women's pursuit of STEM careers. 	 Integrating art education into STEM for authentic interdisciplinary learning experience. Encouraging art teachers to teach social justice issues in art rooms. Teaching math, engineering, and art through issues- based STEAM education. Using recycled materials to create moving sculptures addressing social issues.
									issues.

- Nancy Dejarnette	Implementing STEAM in the Early Childhood	Journal of STEM Education	USA	2018	- Focuses on STEAM education in early childhood	- Identical pre- and post-surveys with 5-point Likert	- Positive impact on preschool teachers' dispositions and	- Positive impact on teachers' dispositions and self-	- Positive impact on preschool teachers'
	Childhood Classroom				in early childhood classrooms. - Explored impact on teachers' dispositions, self- efficacy, and STEAM implementation. - Revealed positive changes in teachers' attitudes and self-efficacy. - Teachers needed more professional development for full STEAM implementation.	with 5-point Likert scale ratings. - Field observations conducted by the researcher as a participant observer.	teachers' dispositions and self-efficacy towards STEAM. - Initial limited rate of STEAM lesson implementation by teachers. - High engagement and cooperation of high-needs preschool children with STEAM. - Statistically significant increase in teachers' confidence and knowledge of STEAM. - Challenges in integrating STEM	dispositions and self- efficacy towards STEM. - Teachers need more professional development to fully implement STEAM lessons. - Reluctance among teachers to independently implement STEAM lessons.	teachers' dispositions and self-efficacy. - Increase in engagement and cooperation levels of high-needs preschool children. - Professional development workshops led to a rise in self-efficacy. - Hands-on modeling of STEAM lessons reflected sociocultural and constructivist theories.
							content despite positive teacher		
							engagement.		

- Tibor Szabó - Bernadett Babály - Helena Pataiová - Andrea Kárpáti	Development of Spatial Abilities of Preadolescents: What Works?	Education Sciences	Slovakia	2023	 Spatial skills of preadolescents enhanced through STEAM-based educational program. Developmental methods included two-and three- dimensional visualization tasks. Pre-and post-hoc assessment design used to evaluate spatial ability. 	 Employed two- and three- dimensional visualization tasks in real and virtual environments. Used pre-and post-hoc assessment design with standardized spatial ability tasks. Integrated non- intensive, modular teaching-learning program with regular curriculum for enhancement. 	 Spatial skills of preadolescents can be enhanced through authentic tasks. Slovak experimental programs developed spatial orientation and mental rotation skills. Students improved performance in spatial tasks from pre-test to post- test. 	 Spatial skills of preadolescents can be enhanced through authentic tasks. Mental rotation and spatial reconstruction tasks are important for various professions. Real-life situations in learning units contribute to successful spatial skill development. Students improved spatial skills through a STEAM-based educational program. 	- Conceptualisation, methodology, validation, formal analysis, research, resources, data curation.
- Erna Piila, Hannu Salmi, Helena Thuneberg	STEAM-Learning to Mars: Students' Ideas of Space Research	Education Sciences	Finland	2022	- Study on Mars- themed STEAM learning intervention for 5th and 6th graders. - Examined science knowledge outcomes comparing traditional STEM learning to STEAM approach.	 One-way repeated measures ANOVA to compare pre- and post-test scores. Chi-square test for model fit and multivariate analysis of variance (MANOVA). 	- Gender differences in learning outcomes were not significant. - High-achieving students showed the most improvement in test scores.	 Girls benefited more from Mars- module, academically high- achieving students improved significantly. Gender and academic achievement influenced learning outcomes in the Mars-themed module. 	 Examined learning outcomes of Mars- colonization themed STEAM- learning intervention. Investigated improvement in science knowledge among 5th and 6th graders. Explored gender differences in learning outcomes and academic achievement levels.

arts and sciences possibilities of in educational educational	- Pamela Burnard - Laura Colucci- Gray - Carolyn Cooke	Transdisciplinarity: Re-Visioning How Sciences and Arts Together Can Enact Democratizing Creative Educational Experiences	Review of Research in Education	South Africa	2022	- STEAM education repositioned as democratized enactments of transdisciplinary education. - Democratizing creativity through transdisciplinary education across music, math, and science. - Emphasizes the importance of creative educators in the 21st century.	- Diffraction methodological and pedagogical tool is introduced. - Diffractive analysis from a posthumanist stance is undertaken.	The paper discusses democratized enactments of transdisciplinary education It highlights the potential of transdisciplinarity in inspiring creativity. - The paper repositions STEAM education as democratized enactments of transdisciplinary education. - It emphasizes the integration of arts and sciences in educational	- Emphasizes transdisciplinarity in democratizing creative educational experiences.	 Repositioning STEAM education as democratized enactments of transdisciplinary education. Advancing the debate on new ways of thinking about transdisciplinary creativities. Capturing the deterritorialization of disciplines and how transdisciplinarity is performed. Exploring a wide range of diffractive possibilities of educational
practices. discourses.								practices.		discourses.

- Christina	STEAM Stories: A	GI_Forum	Austria	2022	- Co-creation	- Co-creation	- Co-creation	- Co-creation	- Introduces co-
Zorenbohmer,	Co-creation	-			approach for	approach for	approach	workshops empower	creation approach
Eva Missoni-	Approach to				STEAM learning	STEAM learning	enhances STEAM	voung citizen	for enriching
Steinbacher,	Building STEAM				through personal	through personal	skills through	scientists in STEAM	STEAM learning
Peter Jeremias.	Skills through				stories of interest.	stories.	personal stories.	fields.	experiences.
Ulrich Öttl,	Stories of Personal				- Young citizen	- Workshop-	- Workshop-based	- Sustained	- Aims to foster
Bernd Resch	Interest				scientists	based educational	, method integrates	engagement in	voung citizen
					contribute to story	annroach	CS into STEAM	digital skills and	scientists through
					nhases for local	integrating CS	educational	STEAM tonics	nersonal
					engagement	methods into	framework	benefits participants	involvement
					- Snatial focus on	STEAM	- Young citizen		- Focuses on
					story locations	framework	scientists		huilding digital skills
					unloaded to man-	- Smartnhone ann	contribute to all		and sustaining
					based platform	for recording	phases of story		ongogomont with
					based platform.	images and	creation		STEAM topics
						applecated	Data collection		Empowers
						storios	- Data collection		- Ellipowers
						Stories.	workshops aim to		workshop
						- reconical	Sustain		participants and
						Implementation in	engagement with		generates sustained
						ESRI environment	digital		Interest in STEAM
						for data	technologies.		topics.
						collection.			
						- Integration of CS			
						methods with			
						STEAM learning			
						framework.			

- Qi Zhou, Jin Jiang, Xiaofeng Li, Huimin Hou, Shiqi Yue	Designing an Intelligent Firefighting Toy Car Using AR Technology and STEAM	Mobile Information Systems	China	2022	 - AR technology enhances children's learning through smart firefighting toy car design. - Utilizes STM32F103 chip microcontroller for smart car design. - Aims to develop children's comprehensive capacity and practical technological capabilities. 	- Functional Analysis System Technique (FAST) method for product functions. - Product Black Box Model for rationalizing and analyzing basic functions.	 Design of a smart car using STM32F103 chip for children's education Integration of AR technology to enhance children's learning experience Implementation of VR technology in the design of firefighting toy car Utilization of L293D motor driver chip for motor drive control Conversion of child's STEAM smart material demands into design features 	 Intelligent firefighting toy car controlled remotely with STM32F103 microprocessor core. Compact structure with ultrasonic sensor to prevent collisions and detect fires. Suitable for fire protection in warehouses, explosive enterprises, and petrochemical firms. 	- Creation of AR intelligent firefighting toy car laboratory integrating interdisciplinary knowledge. - Utilization of STM32F103 chip microcontroller for toy vehicle development.
- Fernández, R. C., & Romero, M. C.	Robotics and STEAM Projects: Developing Creativity in Primary Education Classrooms	Pixelbit	Spain	2020	- PIXEL-BIT research paper on educational robotics and creativity.	 Alignment of objectives between teachers and researchers before the school year. Defining work methods in the classroom and data collection systems. Informing families about the research impact on class development. 	 Significant differences in creativity between students in pre and post-tests. Three main phases: planning, program development, and evaluation. 	- Conclusions include alignment of objectives, methodology, results, and discussion.	 Study outlines methodology, analysis, results, discussion, and conclusions. Provides a fun, practical opportunity for children to explore and create. Methodology used to analyze creativity and expert evaluations of products.

- Hongbo Xue	A New Integrated Teaching Mode for Labor Education Course Based on STEAM Education	International Journal of Emerging Technologies in Learning (iJET)	China	2022	- STEAM education enhances students' skills through interdisciplinary teaching methods. - Bayesian network model improves teaching effectiveness in labor education courses. - Traditional teaching methods are less effective compared to integrated teaching mode.	- Analysis of STEAM education concept in labor education curriculum Establishment of a college student labor education course online self- study model. - Introduction of Bayesian network mode and nondirective teaching mode.	- Students' academic scores significantly increased with STEAM-based integrated teaching mode Enhanced labor skills, self-learning capacity, team spirit, and participation.	 Integrated non- directive teaching and Bayesian model for effective college education. STEAM-based teaching mode enhances labor education course outcomes. 	- Analyzed STEAM education application in labor education curriculum Established a Bayesian network model for college student labor education. - Enhanced students' skills, self- learning capacity, and team spirit significantly.
- Jo Trowsdale - Richard Davies	- Creative pedagogies in digital STEAM practices	- The research paper discusses a distinctive STEAM education model The Trowsdale art-making model for education (TAME) approach is transparent and effective in supporting learning. - The TAME model offers a distinctive and effective approach for education The TAME approach is a form of STEAM education with a specific	England	2023	 Discusses a distinct STEAM model developed through innovative education projects. Examines positive outcomes for pupils and teachers implementing the TAME model. Argues TAME offers an effective model for STEAM and broader education. 	- The paper draws on two studies: a five-year mixed methods study. - Participatory and collaborative qualitative study of Teach-Make.	 Positive educational outcomes for pupils and teachers' appetite for translation. Clear curriculum model (TAME) and professional development improved teachers' planning. Teachers reported positive impact on supporting learning, pupil progression, and enjoyment. 	 The TAME model is effective and accessible for teachers. Teachers reported positive impacts on learning progression and enjoyment. Continued development of the TAME approach in schools is recommended. Future research should assess the efficacy of each TAME element. 	 The TAME model offers a distinctive and effective STEAM education model. Integration of arts and STEM for real- world, complex issue-based curricula. Positive educational outcomes for pupils and improved teacher planning skills.

		theoretical foundation.							
- Suthasini Bureekhampun - Torfhun Mungmee	STEAM education for preschool students: Patterns, activity designs and effects.	- Journal for the Education of Gifted Young Scientists.	Bankok	2020	 STEAM education for primary students integrating various skills and knowledge. Designed moveable robots inspired by Beagle breed, evaluated by experts. Aimed to enhance students' creative and innovative thinking skills. Utilized pre- experimental design method with 5 groups of 15 children. 	- Pre- experimental design method with one-shot- case study design. - Statistical software SPSS for mean, standard deviation, and Likert Scale.	 Design of three moveable robots inspired by Beagle breed. Evaluation by three experts with high mean scores. Learning achievement mean of 80.33% with proposed activities. 	 STEAM learning enhances student interest in science through art. Children showed creativity, emotional awareness, and imagination during activities. 	 Design of three moveable robots inspired by Beagle breed. Integration of knowledge areas to create innovative learning activities.

- José-Manuel Diego- Mantecón - Zaira Ortiz- Laso - Zsolt Catedrático	STEAM projects with KIKS format for the development of key competences	Communicate	Finland, England, Hungary, and Spain	2021	- Study on STEAM projects with KIKS format for key competences. - 267 students from four countries developed eight key competences. - Combination of STEAM projects and KIKS format enhances competences.	 Design of STEM projects with Thibaut's framework for implementation. Integration of STEAM contents, problem-solving, research processes, design, and cooperation. Projects required bilingual reports and non- native language videos for dissemination. 	 Combination of STEAM projects and KIKS format enhances key competences. Students improved scientific, mathematical, digital, and communication competences. Use of technology, data processing, and dynamic geometry tools observed. 	 Combination of STEAM projects and KIKS format enhances key competences. STEM projects improve scientific and mathematical competencies in secondary students. Digital competence and collaborative learning skills are developed through project implementation. Various initiatives and resources promote continuous learning and key competences. 	 Establishes relationship between STEAM projects with KIKS format and key competences. Combines project- based STEAM learning with KIKS format for competency development. Shows how project-based learning enhances math and science competencies. Highlights the impact of prolonged participation in the implementation program.
- Laura Castro- Santos - Puime Félix - Isabel Guillén - Lamas-Galdo	- STEMbach Experiences at Higher Education	Open Education Studies	Spain	2023	- Describes STEMbach program for high school students in Galicia. - Aims to promote STEM careers and connect with college education.	- Different methodologies applied in STEMbach projects: Table 3 details them. - Projects had varying methodologies due to different university professors.	 Promoted STEM careers with constructive results in Galicia Projects included wave energy, steel behavior, and Spanish economy analysis. Analyzed alloy compositions and cooling curves in educational projects. 	 Positive results in promoting STEM careers through various methodologies. Encouraged vocation towards scientific and technological research among high school students. Projects enhanced students' knowledge and training in entrepreneurship and STEM fields. Collaboration between University of A Coruna and high schools in Galicia. 	 Describes STEMbach experiences in engineering, economics, materials, promoting STEM careers. Projects include wave energy, steel behaviour, alloy composition analysis.

		- The research			- Study on pedagogical STEAM model enhancing project competence and learning motivation. - Model positively		Students who learned with the STEAM plan got better at doing projects and	The STEAM plan could be a good way to teach high school kids when you're	
		"The Effect of a Pedagogical STEAM Model			perceptions and interdisciplinary competence.	The study used a special teaching	more than those who didn't. The STEAM plan	subjects togetherThis plan seems to keep	that the STEAM plan can help students and might
	The Effect of a	on Students'			- Qualitative data	plan called STEAM	also made it easier	students interested	be used as a guide
- Chien-Liang	Pedagogical STEAM	Competence			effectiveness of the	it worked by	what they learned	make them want to	different subjects
Lin	Model on Students'	and Learning				comparing two	from different	learn more as they	together in high
- Chun-Yen Tsai	Competence.	Motivation".	China	2021	model.	groups of students	subjects	go along	school.

- Cassie Quigley - Dani Herro - Elizabeth King	- STEAM Designed and Enacted: Understanding the Process of Design and	- J Sci Educ			 Focus on STEAM curriculum design and implementation in elementary schools. Emphasizes teacher facilitation, inquiry, and authentic tasks for 	Teachers designed STEAM curriculum using problem-based units to promote student inquiry and integrate disciplines, with feedback and support provided by researchers. Observations and debriefing sessions were conducted to document the implementation and provide	Key findings included that teachers who designed relevant problems aligned with the STEAM model and that teacher facilitation promoted inquiry and authentic	The research highlighted the need for specific strategies to support teachers in discipline integration, teacher facilitation, and authentic tasks, as well as the development of grade-specific implementation	The study contributes to understanding how K-5 teachers can design and implement STEAM learning environments and defines curricular supports for STEAM
- Holly Plank	Implementation	Technol (2020)	USA	2021	STEAM education.	feedback.	tasks.	models.	education.

					The study combined qualitative and			
					quantitative			
					approaches, using			
					a design-based			
					research (IBD)			
					methodology to	The		The research
					assess a STEAIVI	the STEAM		field by providing
					sequence for	sequence showed		evidence of the
					primary	evidence of being		relevance of
					education.	viable for		iSTEAM for
					Data collection	developing both		improving primary
					techniques	scientific and		education students'
					included	comprehensive		competencies when
				Design and	participant	competencies in	The study concluded	implemented
				- Design and	notes and	The study found	hased research	based on a solid
				STEAM teaching	analysis of	that the	approach is useful	foundation.
				sequence for	students' personal	theoretical and	for designing,	It also offered
				Primary Education.	field notebooks	methodological	implementing, and	design principles
- Design and				- Results show	for qualitative	choices were	evaluating	that could be useful
- Ileana Greca assessment of a	- The research			viability for	data, and	appropriate for	educational	for teachers
- Jairo Ortiz- STEAM teaching-	paper is			scientific and	numerical data	achieving the	proposals to improve	wanting to design
Revilla learning sequence	published in the			integral	from qualitative	intended	education,	sequences based on
- Irene for Primary	Revista Eureka	Creation	2021	development of	analysis for	educational	particularly in	the proposed
Arnassecq Education.	journal.	Spain	2021	students.	quantitative data.	outcomes.	science.	theoretical model.

- Alexey Chistyakov, Sergei Zhdanov, Elena Avdeeva, Elena Dyadichenko, Maria Kunitsyna, Roza Yagudina	- Exploring the characteristics and effectiveness of project-based learning for science.	- The journal is EURASIA Journal of Mathematics, Science and Technology Education.	Russia	2023	- Explores project- based learning in science and STEAM education Analyzed 36 articles on PjBL effectiveness and characteristics PjBL enhances student learning outcomes and critical thinking skills.	The researchers conducted a literature review using the Eric database to find articles on project- based learning (PjBL) in science and STEAM education, analysing 36 articles through qualitative thematic review.	PjBL is an effective learning model for science and STEAM education, improving student learning outcomes and fostering important skills - No significant difference in project competence scores between the two groups.	This article contributes to the literature by providing evidence- based arguments for the benefits of PjBL and encouraging teachers to use PBL in their classrooms.	Teachers and curriculum designers are recommended to consider the importance of authenticity in PJBL to maximize its impact on learning
- Ahmad Dasuki, Mohd Hawari, Azlin Iryani, Mohd Noor.	- Project Based Learning Pedagogical Design in STEAM Art Education	- Asian Journal of University Education (AJUE)	Malasya	2020	 Explores Project- Based Learning in a multidisciplinary art classroom involving STEAM. Highlights benefits, challenges, and recommendations for implementing PBL in art education. Discusses findings, implications, and recommendations for arts curriculum and school systems. 	The study used interviews, observations, and document analysis to explore teaching strategies in Project-Based Learning (PBL) for art education.	PBL improved teaching strategies and could potentially replace traditional teacher-led classrooms, emphasising student collaboration and problem-solving in art projects.	PBL in STEAM art education has challenges but offers benefits like enhancing soft skills, leadership, and creativity; recommendations are made to overcome these challenge,	The study contributes insights on the effectiveness of PBL pedagogical design in art education and its potential to improve student outcomes

- Pérez Torres - Couso Lagarón - D Marquez Bargalló - Miquel Torres - Digna Lagarón - Conxita Marquez	- Evaluation of STEAM Project- Based Learning (STEAM PBL) Instructional	Education			The paper investigates how well different school projects in Spain teach students important skills in science, technology, engineering, arts, and math (STEAM) by looking at 46 projects. It finds that some projects are better than others at teaching all the skills, suggesting schools need to think about how they design these	The research used a mix of qualitative and quantitative data to understand teaching practices and beliefs around STEAM PBL instructional designs in	The evaluation of 46 STEAM projects showed an imbalance in sophistication levels, with better performance in multidisciplinary criteria than in Science and Technology disciplinary	There is a need for standardised understanding and improvement in the design of STEAM projects to better serve educational purposes and integrate STEAM	The paper contributes to the field by mapping the sophistication of STEAM projects and identifying areas for design
Bargallo	Designs	Sciences	Spain	2023	projects.	<u>Catalonia, Spain.</u>	criteria	competences	improvement.

					The study looks at				
					how STEAM				
					education affects				
					Chilean teachers by				
					checking their	Adapted a tool to	Found that		The study adds to
	- Exploring the				knowledge,	measure teachers'	teachers are not	Teachers' positive	our understanding
- Jairo Ortiz-	Impact of				feelings, and	views on STEAM,	very familiar with	attitude is a good	by showing the
Revilla	Integrated STEAM				confidence about	validated it, and	STEAM but want	sign, but they need	need for teacher
- James Albright	Education in Early				this teaching	used it to survey	to learn; they're	proper training to	training in STEAM
- Marcela Silva-	Childhood and				method, aiming to	31 teachers before	moderately	use STEAM	and how teachers'
Hormazábal	Primary Education	Education			help design better	they learned more	confident they can	effectively in their	views can affect its
- Ángel Alsina	Teachers	Sciences	Chile	2023	training for them.	about STEAM	use it in class	teaching	use in class

- Roberto Capone, Lynda									
Faggiano, Zelha					The paper presents		Developed a		
Tunç-Pekkan,					a method to create		'forward' STEAM		The authors
Nicolás Montés,					STEAM projects,	The 'forward' and	project on	The methodology	collectively
Alberto					blending subjects	'backward'	sustainability and	can adapt STEAM	contributed to
Zapatera,	- A Novel				like Science,	methodologies	a 'backward'	projects to various	conceptualization,
Francisco Ruiz,	Methodology to				Technology,	were used to	project themed	national curricula,	methodology,
Laura Zuccato,	Develop STEAM				Engineering, Art,	integrate STEAM	around cooking,	making them	validation, formal
Sandra Rainero,	Projects According		Spain,		and Mathematics,	disciplines with	demonstrating the	transferable across	analysis,
Amerigo	to National	Education	Italy,		based on European	educational	methodology's	different European	investigation, and
Zanetti.	Curricula.	Sciences	Cyprus	2023	school curricula	curricula	application	countries.	writing

11 Annex 6. Summary table of the articles selected for the STEAM and Inclusion topic study.

AUTHORS	TITLE	YEAR	COUNTRY	JOURNAL	SUMMARIZED ABSTRACT	RESULTS	CONCLUSIONS	CONTRIBUTIONS
Marcia J Millet, Twianie Roberts	Preparing All Girls to Change the World through STEMM	2023		Open Journal of Social Sciences	- Increase female representation in STEM through mentoring and parental support. - Identify and support 20 girls interested in STEM from elementary.	 Increase female representation in STEM fields Provide mentoring and support for pursuing STEM careers 	 Increase female representation in STEM fields through mentoring and support. Identify and engage 20 female students in STEM opportunities. 	 Increase females in STEM careers through mentoring and support. Identify 20 girls for STEM opportunities from elementary to high school.
Emilia López-Iñesta, Carmen Botella, Silvia Rueda, Anabel Forte, Paula Marzal	Towards Breaking the Gender Gap in Science, Technology, Engineering and Mathematics	2020			- Gender gap in STEM, impact on education and gender equality. - Pilot program and Girls4STEM project to promote STEM careers for females.	- Computing camps impact students' confidence and perception of themselves in computing. - Follow-up and future additional survey data are needed to determine the effectiveness of informal computing programs in retaining women in STEM.	- The pilot program had a significant impact on increasing the proportion of female students in STEM fields. - Continuous efforts are needed to address the gender gap in all STEM fields.	- Investigates the impact of computing camps on young women - Examines the long- term effects of informal computing programs on women in STEM

Gabriela Ortiz-Martínez, Patricia Vázquez-Villegas, M. Ileana Ruiz- Cantisani, Mónica Delgado-Fabián, Danna A. Conejo-Márquez, Jorge Membrillo-Hernández	Analysis of the retention of women in higher education STEM programs	2023	Humanities & social sciences communications	Gender gap in undergraduate STEM programs, with only 17% women. Factors influencing women's decision to pursue or abandon STEM careers.	 A slightly higher percentage of female students than male students dropped out of STEM careers. Academic performance may not be the main reason for leaving a STEM career. 	 Only 17% of women choose STEM careers. Factors affecting women's decision to stay in STEM include inspiring faculty and a supportive environment. 	 Historical data shows only 17% of women choose STEM careers. Factors affecting women's decision to stay in STEM careers were identified.
Wan Ng, Jennifer Fergusson	Engaging High School Girls in Interdisciplinary STEAM	2020	Science education international	 Research investigates impact of STEAMpunk Girls Program on high school girls' learning Program uses project-learning and design thinking strategies to increase girls' engagement with STEM 	- Minority ethnic women's STEM pathways: pragmatic, persistent, precarious. - Identity development and management in STEM higher education.	- The STEAMpunk Girls Program had a positive impact on high school girls' learning. - The program increased girls' confidence and motivation in STEM.	 Increased confidence and motivation in high school girls Positive impact of the STEAMpunk Girls Program on students and teachers
Tasos Barkatsas, Grant Cooper, Patricia McLaughlin	Investigating Female Students Stem- Related Attitudes, Engagement and Work- Intentions When Involved in a University Workshop Initiative	2019		- Investigated female students' STEM attitudes, engagement, and work intentions. - Used a survey on 221 students aged 11-16 in Australia.	- STEM in Situ workshops positively impact female students' STEM attitudes. - Findings can influence future STEM interventions for young women.	 Female engagement in STEM is declining at tertiary and secondary levels. STEM interventions can promote engagement and interest in STEM. 	 Investigating female students' STEM-related attitudes, engagement, and work intentions in a university workshop initiative. Highlighting the outcomes of the STEM in Situ workshops on female students' attitudes and engagements with STEM careers.

Anthony Kenneth	Gap in STEM Education: Why is there a decline in women participation?	2022	International Journal of Research in STEM Education	- Gender gap in STEM education is observed worldwide. - Factors contributing to the gap include interests, awareness, mentors, and encouragement.	- Gender gap in STEM education is observed worldwide. - Factors contributing to the gap include interests, awareness, and mentorship.	- Women's career decisions in STEM influenced by interests - Factors contributing to the gender gap in STEM	 Women pivotal to scientific discoveries, underacknowledged in STEM histories. Fewer representations of minority ethnic women in STEM higher education.
Rie Kijima, Mariko Yang-Yoshihara, Marcos Sadao Maekawa	Using design thinking to cultivate the next generation of female STEAM thinkers	2021	International Journal of STEM Education	 Design thinking workshop in Japan aimed to change female youths' perceptions of STEM Workshop resulted in increased interest in engineering, creative confidence, and positive perceptions of STEM 	 Increased interest in engineering among female youths Greater creative confidence and positive perceptions of STEM 	 Short design thinking workshop positively impacts female youths' interest in STEM Design thinking approach increases creative confidence and empathy 	 - RK conceived, designed, analyzed, and wrote the manuscript. - MSM co- organised workshops, recruited design coaches, and users.
Kimberly K. Arcand, Sara Price, Lisa F. Smith, Brian Hsu	Women in STEM Interview Analysis: Encouraging Young Female Learners in STEM Pathways	2022	Communication, society and media	- Qualitative study on obstacles and challenges in STEM for females - Importance of mentorship, early engagement, and self-efficacy	- Five themes emerged from the data: influencers, educational experiences, hurdles, attitude changes, and recommendations. - Participants discussed attitude changes and the need for continued STEM initiatives.	 Importance of mentorship and support system in STEM Need to engage young females in STEM activities 	 STEM programs should address cultural issues and promote gender equality. Attitudes towards women in STEM have improved, but challenges remain.

Heidi Blackburn, Jason A. Heppler	Women in STEM in Higher Education: A Citation Analysis of the Current Literature	2019	Science & Technology Libraries	 Diversification efforts in STEM education for women in the US. Increased studies on women's experiences in STEM programs. 	- The paper analyzes the literature on women in STEM in higher education. - The authors found no articles regarding citation analysis for this topic.	- No articles found on citation analysis for women in STEM. - Need for analysis in the area of women in STEM.	 Increased number of studies on women in STEM in higher education Analysis of citation patterns in women in STEM literature
Claudia Alejandra Hernández Herrera	STEM women and their perceptions of their university career journey	2021	Nova Scientia	- Study on perceptions of STEM women in higher education - Challenges faced by women in STEM fields	- Women in STEM fields face challenges and discrimination. - Higher education institutions need to create more supportive environments for women.	 Higher education institutions need to eliminate hostile environments towards women students. Actions should be taken to increase the number of women teachers. 	 Access to quality education for women helps reduce the gender gap. Increasing the number of teachers and promoting stays in productive sectors.
María Paola Sevilla, Virginia Snodgrass Rangel, Elsa Gonzalez	Understanding motivational beliefs of women in postsecondary STEM- vocational- technical education. Evidence from Chile	2023	Journal of Education and Work	 Study explores women's entry and persistence in male- dominated STEM vocational programs in Chile. Different motivational patterns emerged depending on the economic sector women were preparing to work in. 	 Different motivational patterns of EVT beliefs emerged for women in STEM-related VTE programs. Institutional and government policies should consider these motivational profiles to improve women participation. 	 Different motivational patterns emerged for women in STEM- related VTE programs. Institutional and government policies should consider these motivational profiles. 	 Increase females in STEM careers through mentoring and support. Identify 20 girls for STEM opportunities from elementary to high school.

María Amparo Oliveros Ruiz	STEAM as a tool to encourage engineering studies	2019		- Survey on female engineering students in Mexico to investigate motivation and performance Proposal to include STEAM model in engineering schools to increase female enrollment.	- The survey revealed the factors influencing students' decision to pursue engineering. - Family, cultural background, and personal aspirations were found to be important factors.	- Women are increasingly informed and have a greater ability for mathematics when choosing a career in engineering. - The presence of successful women in engineering is important for inspiring more women to choose this field.	- Determining factors that define the motivation of women in STEM careers Proposing the inclusion of a STEAM model in engineering schools to increase enrollment of women.
Rahmat Kusharyadi, Erika Yohanna Seventina Siahaan	Women in STEM in Higher Educations: Good practices of attraction, access, and retainment in higher education	2023	Womens History Review	- Women in STEM in higher education: practices for attraction, access, retention - Acknowledgment to LPDP and PUSLAPDIK for financial assistance.	 Increase female representation in STEM fields Provide mentoring and support for pursuing STEM careers 	 Attraction, access, and retainment practices for women in STEM. Acknowledgment to LPDP and PUSLAPDIK for financing and support. 	 Increase females in STEM careers through mentoring and support. Identify 20 girls for STEM opportunities from elementary to high school.
Adams, E. C., Oduor, P., Wahome, A., Tondapu, G., & Nairobi, K.	Reflections on two years teaching earth science at the women in science (wisci) steam camp	2022	Journal of Women and Minorities in Science and Engineering	 WiSci STEAM camp aims to address barriers faced by women in STEM. NASA's participation in the camp helped inspire girls to explore Earth science. 	- Growth in confidence in core components of the SERVIR curriculum - High interest from participants to choose a STEM career	- The WiSci STEAM camp helps support young women on their journey to STEM careers. - The camp had a positive impact on participants' confidence and interest in STEM careers.	- The WiSci STEAM camp supports young women on their journey to STEAM careers. - The NASA SERVIR team introduced hands-on Earth science applications to participants.

Sofie Areljung, Anna Günther- Hanssen	STEAM education: An opportunity to transcend gender and disciplinary norms in early childhood?	2021	Contemporary Issues in Early Childhood	- STEAM education gaining ground in many parts of the world - Opportunity to transcend gender and disciplinary norms	- The paper discusses the potential of STEAM education in early childhood. - It explores how STEAM education can transcend gender and disciplinary norms.	- STEAM education can transcend gender and disciplinary norms in early childhood. - It is gaining ground in higher stages of the educational system.	- STEAM education transcends gender and disciplinary norms - Provides opportunities for early childhood development
Ermira Idrizi, Sonja Filiposka, Vladimir Trajkovikj	Gender impact on STEM online learning- a correlational study of gender, personality traits and learning styles in relation to different online teaching modalities	2023	Multimedia Tools and Applications	 Study explores gender differences in online and traditional STEM learning. - Female students excel in traditional courses, while males slightly exceed in online courses. 	 Female students outperform male students in traditional STEM courses. Male students slightly outperform female students in online STEM courses. 	 Female students in STEM can outperform male students in traditional courses. Male students slightly outperform female students in online courses. 	 Examines gender differences in online and traditional STEM learning Identifies patterns of women's success and access to STEM online courses
Tessa Elizabeth Sadie Charlesworth, Mahzarin R. Banaji	Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions	2019	The Journal of Neuroscience	- Gender gaps in STEM are not due to innate ability differences. - Gender gaps in STEM arise from differences in perceived values and opportunities, as well as implicit and explicit biases.	- Gender disparities persist in STEM fields - Implicit bias is a key factor in gender gaps	Understanding and addressing the complex issues surrounding gender in STEM are important because of the possible benefits to STEM and society that will be realised only when full participation of all capable and qualified individuals is guaranteed.	- Gender disparities persist in STEM fields - Implicit bias is a significant factor contributing to these disparities

Roxanne Hughes, Jennifer Schellinger, Barbara Billington, Brenda Britsch, Alicia Santiago	A Summary of Effective Gender Equitable Teaching Practices in Informal STEM Education Spaces	2020	 Intersectional identity lens needed for studying girls in STEM Gender equitable strategies to support girls' STEM identities 	- Research on gender equitable practices in STEM education - Strategies to address gender inequity in middle school girls	The authors summarizes research on gender equitable practices for middle school girls in the last decade and addresses the disconnect between research and practice by presenting the findings in a way that educators can immediately act on.	- The paper presents six strategies for promoting gender equity in STEM education. - These strategies have shown positive influences on gender inequity in STEM.
Sorina Mihaela Bălan, Camelia Stanciu	Gender Stereotypes and STEAM Education	2021	 Girls are stereotyped as focused on appearance and emotive. Efforts are being made to promote STEAM education. 	- Paper discusses gender stereotypes in STEAM education and societal mentality. - Presents results of gender workshops to create gender- aware content.	In this paper, the results of sensitive gender workshops are presented to provide illustrations of stereotypes as an input for the creation of value-added content with gender awareness and continue sensitizing teachers about gender stereotypes in approach to learning that uses Science, Technology, Engineering, the Arts and Mathematics in education.	- Boys are more oriented towards STEAM education - Girls are not as interested in STEAM education

Maria Ampartzaki, Michail	Perceptions	2022	Lecture notes in	- Limited	- Survey explored	In this article,	- Limited
Kalogiannakis, Stamatios Papadakis &	About STEM		educational	implementation	opinions of	the authors	implementation of
Vasiliki Giannakou	and the Arts:		technology	of STEAM	teachers, parents,	conducted a	STEAM approach by
	Teachers',			approach in	artists, and STEM	survey to explore	educators and
	Parents'			education	professionals	the opinions of	professionals.
	Professionals'			- Lack of support	- Results showed	teachers,	- Lack of support
	and Artists'			and resources	limited	student-	and resources for
	Understandings			for educators	implementation of	teachers,	implementing
	About the Role			implementing	STEAM, lack of	parents, artists,	STEAM in
	of Arts in STEM			STEAM	resources, and	and STEM	education.
	Education				support	professionals	
						about STEAM,	
						and the results	
						showed that	
						although	
						teachers,	
						students, and	
						STEAM	
						professionals	
						knew about the	
						STEAM	
						approach, only a	
						few had the	
						experience of	
						implementing it,	
						the major	
						difficulties	
						educators faced	
						In Implementing	
						STEAIVI relate to	
						the	
						methodological	
						nrinciplos of this	
						approach and	
						the lack of	
						educational	
						resources.	
	Women in	2019	UNESCO				
	Science						

- Shashidhar Belbase, Raj Bhesh,	 At the dawn 	2021	International	International	- Examined	- Identified	 Conclusions 	- Analysis of
Wandee Mainali, Hassan	of science,			Journal of	integrated	prospects,	include	prospects,
Kasemsukpipat, Munkhjargal Tairab,	technology,			Mathematical	STEAM	priorities,	prospects,	priorities,
Adeeb Gochoo, Jarrah, Ra Mainali,	engineering,			Education in	education	processes, and	priorities,	processes, and
Wandee Kasemsukpipa, Hassan	arts, and			Science and	through	problems of	processes, and	problems in STEAM
Tairab	mathematics.			Technology	literature review	STEAM education.	problems of	education.
					and document	- Emphasized	STEAM	- Integration of arts
					analysis.	curriculum	education.	into STEM
					- Identified	integration,		disciplines to
					prospects,	pedagogical		enhance learning.
					priorities,	processes, and		- Emphasis on
					processes, and	assessment in		project-based
					problems in	STEAM education.		learning and
					STEAM	- Explored the		problem-solving in
					education.	implications of		STEAM education.
					- Explored	STEAM education		
					STEAM initiatives	on teacher		
					in South Korea,	development and		
					US, China, and	training.		
					Singapore.	- Discussed		
					- Analyzed	assessment		
					themes like	practices in		
					movement,	STEAM education,		
					curriculum	including project-		
					integration,	based learning.		
					pedagogy, and			
					challenges.			

- Rachael Pearson	- Title: STEAM STEAM Education and the Whole Child: Examining Policy and Barriers	2021	USA	International Journal of the Whole Child	 Whole Child education nurtures students in critical skills for the future. STEAM programs align with Whole Child approach, fostering inquiry and skills. Research highlights barriers to implementing high-quality STEAM programs in schools. 	 Discusses barriers to implementing high-quality Whole Child STEAM programs. Highlights the importance of STEAM education for student development. Emphasizes the need for further research on STEAM education. Provides strategies for promoting high- quality STEAM education in schools. 	 Emphasizes the need for high- quality STEAM programs in schools. Discusses barriers and funding issues hindering the implementation of STEAM programs. Advocates for flexible, interdisciplinary curriculum to nurture student creativity. 	 Emphasizes high- quality STEAM programs for diverse student needs. Discusses barriers and funding issues in implementing Whole Child STEAM programs. Advocates for policy changes to enhance curriculum flexibility and interdisciplinary learning.
- David Aguilera - Jairo Ortiz-Revilla	- STEM vs. STEAM Education and Student Creativity: A Systematic Literature Review	2021	International	Education Sciences	- STEM and STEAM education impact student creativity positively. - Review of 14 educational interventions from 2010-2020. - No clear definitions of STEM and STEAM in some studies.	- STEM and STEAM education lack clear definitions in studies. - Positive effects on student creativity were observed in both approaches.	- STEAM education doesn't surpass STEM in promoting student creativity. - Lack of clear definitions in STEM and STEAM approaches.	 Review of STEM and STEAM interventions on student creativity. Evaluation of creativity through process, environment, and person. Data extraction on STEM and STEAM education impact on creativity. Systematic literature review on STEM and STEAM interventions.

- Shih-Yun Lu	Taiwan	2022	- International	- Focus on	- Project-based	- PBL-oriented	-
- Chih-Cheng Lo	Project-based		Journal of	STEAM	learning	STEAM	Conceptualization,
- Jia-Yu Syu	learning		Technology and	curriculum for	incorporating	curriculum	methodology, data
	oriented		Design	elementary	STEAM positively	positively	curation, writing,
	STEAM: The		Education	students	influences	influences	review, editing,
	case of micro-			integrating art.	students' creative	students'	supervision.
	bit paper-			- Utilizes PBL	recognition.	creative	
	cutting lamp.			with Chinese	- Short-term	recognition.	
				Paper-cutting	STEAM course	- Short teaching	
				and BBC	benefits cognitive	period limits	
				micro:bit.	facet of creativity,	emotional facet	
				- Positive impact	not emotional.	of creativity in	
				on students'	 Paper-cutting art 	students.	
				creative	project enhances		
				recognition and	divergent thinking		
				development.	and problem-		
				- Short-term	solving skills.		
				course, suggests			
				extending for			
				long-term			
				influence			
				evaluation.			

12 ANNEX 7. Keyword network image of STEM/STEAM and education research

